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Chapter 30
Data analysis in flow cytometry

W.A. MOORE & R.A.KAUTZ

Statistics. 30.1

The use of simultaneous four-antibody quantitative
immunofluorescence and other muitiple dye systems
in flow cytometry (see Chapter 29) presents the
experimenter with an enormous amount of multidi-
mensional numerical data to process. in order to be
useful as an experimental tool. this information must
be condensed and displayed to the investigators in a
compact and readily interpretable form. Often, little
or nothing is known about the distribution of fluores-
cence beforehand and. therefore. very general
methods must be used. In these situations it wouid be
useful to have displays which wouid guarantee that ail
significant information is represented. Furthermore. it
is very advantageous in terms of computer and
investigator efficiency if such a display can be gener-
ated entirely automatically, with no previewing by the
investigator.

The authors have developed methods which are
very satisfactory by these critenia for displaying one
and two variabie distributions by means of computer
generated graphics. Their work has revealed that the
most common methods in use heavily emphasize
subpopulations with low variability. In addition. the
authors have explored the efficiency with respect to
sample size (not computer (:ne!) of various pro-
cedures for producing such graphical representations.
For immunofiuorescence these methods have allowed
an approximately threefoid reduction in the size of

sample required (which also means threefold reduc-

tion in disk space used).

This article starts with an introduction to the
staustical termimology and methods usea to anaiyse
muitiple immunofluorescence data. Biologists are
encouraged to read it, skipping the equations if
absolutely necessary. Equations are presented only to
restate the argument in more formai terms. Para-
graphs in which the argument is essentially mathema-
tical are marked with asterisks and may be omitted by
biologically oriented readers.

In the concluding section. the authors will discuss
the graphical dispiays and explain the motivation for
and, most important, the interpretation of the two
variable displays.

Graphical displays, 30.6

Statistics

In flow cytometry, single cells in suspension are
sampled one at a time from a reservoir by passing them
in a thin stream past a series of sensors. Since the
arrival time of the ceils at the sensor stations is not
fixed in any way, a value X given bv a sensor at some
sampling time cannot be exactly predicted ahead of
time. It is, in mathematicali terms. a ‘random variable'.
Nevertheless, if the sensors are measuring interesting
phenomena. there should be useful information avail-
able from these ‘random’ values. Random variables
(such as X) are a distinct type of entity different from
the usual ‘algebraic’ variables, and are traditionally
expressed as capital letters to distinguish them from
related algebraic variables, which will be written in
lower case. A random variabie does not have a single
"value’ like that assigned to an aigebraic variable; it
can only be used within some formula which assigns a
probability to some set of values it might take.
Statistically we can hope to evaluate the probability
that a person’s height X is less than 72" without
knowing that their exact height is, for example,
64.23125” or 74.78543”. This probability is usuaily
expressed as

PriX <72)

When we want to evaluate such a probability without
specifying the exact condition we must combine
random and algebraic vanables: for exampie,

Pr{X < x}

is ‘the probability that the random variable X is less
than the aigebraic variable x* (whatever value x has
and whatever possibie vaiues X could take).

The output of each of the sensors is then a random
vanable which changes with time (a *stochastic pro-
cess’). For these purposes the only interesting times are
the times (T) when a cell is centred on the sensors (a
‘discrete’ process). This time, T, is itself a random
variable and is called the ‘epoch’. despite the fact that
it is typically measured in microseconds. At such a
time, T, we say that the value given by each of the
sensors. . --
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represents the ‘phenotype’ of the celf. In this list X7
represents the value measured by the /'* sensor, and is
called the /** ‘component’ of the phenotype. The (act
that the phenotype is a random variable does not
imply any non-determinacy on the part of the ceil
(aithough it may in fact have some) but oniy that the
order and time of arrival cannot be specified ahead of
time, i.e. is a coroilary to the fact that the epoch T is
random.

If we actually record the values for a sequence of
cells, this is cailed a ‘realization’ of the process. Such
recorded values are not random, i.e. they are normal
numbers. Random variables are used to describe these
values before they are recorded and to derive aigebraic
formulas which may be used to perform computations
on the recorded values. Usually the epochs (T7; for
i=1...., n)and the phenotypes

xm, ...

are numbered sequentiaily to keep track of them. itis
worth noting that mathematicians are as confused as
anybody by formuia involving iarge numbers of super-
and subscripts, and frequently combine all the ‘com-
ponents’ X'/ into a ‘vector’ or ‘ordered m-tuple’ X for
compactness of the formula. This wiil help when
describing a ‘sample’ of the phenotypes, X,...Xn
where ‘

Xp=(X",..., 4™

In this case the related variable (random or algebraic)
is traditionally replaced by a bold (upper/lower) case
letter. In any given realization of the process the
phenotype is a well defined (vector) vaiue for each
observation. The record of a sampie of phenotypes is
frequently called ‘list mode data’.

For most purposes we will assume that the T;and T;
are independent but that on the average time between
events is copstant, and that X’ and X} are also
independent. i.e. the celis do not influence each other
in their transit through the system. Such a process is
said to be a 'Poisson point process’. The behaviour of
such processes has been extensively studied. and it is
theoretically possibie -to test the independence
assumption (i.e. do the cells influence each other?) on
the basis of measured T. This theory is also relevant to
the design and evailuation of cell sorters. However, we
will not consider any of these problems. We will also
assume that the XV are aiso independent of time. This
sort of process is cailed ‘stationary’. Many interesting
processes are not stationary, and indeed it is possible
to study kinetics in flow. However, we wiil not do so
other than noting that by including T; into X, (say as
X9 all of the foilowing methods may be used.

X i=l.....n

Thus. in general. our data consist of a finite ‘sample’
Xi..... X, of the (vector) values which the stochastic
process took. or in other terms 2 list of the phenotyvpes
which were observed in the sample of » cells. From this
data we wouid like to describe the phenotypes present
in some more useful and compact form than
X1, ..., X,. Since the X, are independent of the T,. and
of each other. the order in which we consider the X, is
irrelevant. Therefore we are free to impose our own
notions of order on the data. In particular. since the
phenotypes are quantified. we can use the usual
ordering of real numbers. For example, given svme
range of phenotypes (an empirically described subpo-
puiation) we would like to know the aumber of celis
which displayed this phenotype. We will consider first
a simple type of subpopulation, namely

(Xt XV <x}

those cells that measured less than x by the j* sensor.
(Using < rather than > may seem awkward at this
point but it gives a positive derivative which will be
more convenient later on.) We can summarize the
number of cells in the sample which had such a
phenotype for every value of x with the function

FU (x) = 1/nY To.(XV)
im)
the ‘sample marginal cumulative distribution func-
tion’, where I is the indicator function

l,ifxgz<y

I x. = .
tel?) 0, otherwise

Since potentially we want to compare samples of
different sizes, we have normalized this by dividing by
the number of -cells in the sampie. Restating this
simply, FU)(x) is the frequency of cells which have
phenotype whose ;2 component is less than x. An
easily appreciated example of such a function wouid
be the proportion of individuals who were less than a
given height, tabulated for all reasonable heights.

We can compute the marginal distributions for each
sensor, so it is naturai to wonder if they can compietely
describe the sampie. Unfortunately. they cannot
because they do not inciude any information about
interactions between XY’ and X'V, i.e. correlations
between various components of the phenotype of one
cell. Recall that we said that there were no correlations.
between the phenotypes of successive observations,
but nothing was said about those within each observa-
tion. For example, we can make separate tabies for
height and weight, but if we know someone’s height we
can make a better guess as to their weight than that
given by the general weights table.

In order to compietely describe the sample, the




‘sample joint cumuiative distribution function' must
be used.

Fn(xh cean XM) = ”" z {n I(O..\',) (X‘,J))}

tmi Lyt .
This corresponds to the frequency of the phenotype
XW<xforj=1,....m

in the sample. Notice that the function (and the
phenotype) are described in terms of all the com-
ponents simuitaneously. This corresponds to combin-
ing height and weight into one (much larger) table in
the analogy used above. This is the main disadvantage
to this representation. since computationally the
amount of work involved in dealing with such a
function goes up exponentially with m. Also if m> 1,
the function cannot be drawn on paper, and if m> 3 it
has no physical counterparts at ail. In our practice, m
ranges from 3 to 6 aithough values of 32 and higher
have been used. From this function we can obviousiy
derive each of the previous functions.

FY (x) = Fp(x,... 0, x5 ©,..., )

Although the phenotypes present in the sampie
represent only a finite set of values. we stiil feel that the
underlying phenomoma are continuous in nature. i.e.
may take on infinitely many possible values. This
means that we do not usually expect another sample to
take on exactly the same values. In particular, if we
have two sampies even from the same source, we will
not expect that F, will be identicai to F’,, only that
they wiil be more similar to each other than to other
unreiated samples. This similarity would be expected
lo become greater as the number of cells sampled is
increased. In the limit as 7— o0 we will assume that
frequency (as defined a rational number) aiso becomes
continuous (a real number) or a probability. Of course
no real organtsm has an infinite number of cells to
sample, but we gloss over this quibble. Assuming then
that such a continuous function exists. we wili cail it
F(x), . ... xm). (or F(x) in vector notation) the ‘(joint)
cumulative distribution function’ (CDF). In an ideal
world. F(x) will correspond to X(1), the stochastic
process, in a similar way to that which Fa(x.. .. ... Xn)
corresponds to X,..... X.. a realization of that
process. or a sample.

The function F(x,, . ... x,) describes the probabi-
lity of a particular subpopuiation of phenotypes.
namely those that are small in all their components,
small being defined in each case by the arguments X,
However, thisis nota particularly useful one for many
purposes. If we want 1o calculate the probability of
more complex subpopuiations. we wiil notice that for
one dimension
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PriX < x] = F(x)
Prix<X<y] = F(3)=F(x)
then if F(x) is a smooth (diﬂ'eremiablc) function

f(x) = lim Pr{x < X <x+hlh
h—0

= lim {F(x+h)—F(x)}/h

h=0

= dF(x).dx

exists and is called the ‘probability’ density function’

(PDF), because it represents (in the limit) the probabi-

lity corresponding to a small subpopulation of pheno-

types x < X <x+h. In order to compute the probabi-

lity of an arbitrary set of phenotypes, we can reverse

this process by dividing the specified phenotypes up

into a bunch of small disjoint phenotype groups and

adding together their probabilities. Taken to the limit

this process is integration of the PDF over the
phenotypes in the subpopulation. When f(x) is itself a

smooth function, it is usually easier to visualize f(x)
rather than F(x). However, as long as they both exist
they are in a sense two aspects of the same object. The
above argument can be extended into m dimensions, to
produce a unique joint PDF corresponding to the joint
CDF. We wiil not go into the details. but simpiy note
that from now on x may be vector valued.

Assuming that smooth functions exist correspond-
ing to F(x) and f(x), how can we find them or estimate
their values? An estimator of an unknown value or
function is usually written in the same form as the
unknown but with a ‘hat’. Since F,{(x) is approxima-
tely equal to F(x) the simplest choice of F(x) (estimate
of F(x)) wouid seem to be F,(x). However. this implies
that f(x) = dF.(x)/dx. i.c. we must take the derivative
of the sample CDF. Unfortunately, this derivative is
not useful because it is infinite at the sample points and
zero elsewhere (i.e. is composed of ‘Dirac deita’
functions). One of the main advantages of using F(x)
(which we do not know exactly) in our formulae rather
than F,(x) (which we do) is that the derivative of F(x)
is well behaved. Since the most ‘natural’ estimator of
f(x) is not useful, any use we make of {(x) (and it is the
preferred form for dispiay) will be influenced by the
arbitrary selection of an estimator. This is also the
reason for the use of the sample CDF. since 1t is free of
any model we put on the data.

The preferred approach to finding estimators, due
to R.A. Fisher {1}, is called maximum likelihood. If we
assume for a moment that a unique f(x) does exist and
if the samples are independent. then the likelihood
function Ly, i

Le(Xy, ... X0 = [T (X))

tmi
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is. roughly speaking, the probability that the sample
would have been drawn. (Strictly speaking. this proba-
bility 1s zero: hence the use of likelihood.) In general.
we would like to select some estimator { which would
give the greatest possibie likelihood to the observed
sample. Unfortunately, if f is aliowed to be an
arbitrary function, such an esumator always exists and
in fact corresponds to the derivative of the sample
CDF. It is clear that we shail have to put additionai
conditions on f if we want it to behave neauly.

Ideas for doing so date back to 1661, when London
haberdasher John Graunt constructed a pseudo-
histogram and a version of the CDF in order to
summarize the 'bilis of mortality’ for the London area.
He attempted to caiculate the probability of dying
between various ages, and the probability of living at
least to a given age (i.e. dying later). To construct a
true histogram we must first divide the observed
phenotypes into a finite number of classes. Let @ be the
sampie universe or the set of all possible phenotypes;
then we can cover @ by a finite set of classes ¢, such
that every possible phenotype is in some ciass

k
®=U¢i

(=i

and no phenotype is present in two classes
. =0 Vi
if ¢l‘ 0 &; i#f

We wiil look for a function which is constant on each
¢, (called a set function) and is also a valid PDF or

k

f(xicry...,co) = Z| 3 65
and "
}; fxicr ... e dx = |
or

k
L oue)= 1
J=
The function u is the Lebesque measure of ¢,, loosely
equivaient to the number of phenotypes possibie in
class @, as opposed the number g, observed.
The sample CDF is piecewise constant and, there-
fore, discontinuous and fails to have a weil behaved

derivative. The simplest form of continuous function

that we can approximate F with will be piecewise
linear, i.e. composed of linear segments joined
together. The first derivative of such a function is
piecewise constant, i.c. a histogram estimator. If we let
¢; be the number of X; which fall into class ¢,

q; = i Iy j(Xi)

imi

then

. q;

= =

C o)

gives a maximum likelihood estimator for fix). The
estimated probability density for each class is simply
the number of samples which fell into the set divided
by the size of the set and again normatized for the total
number of cells. n. We can see that the estimated CDF
(in one dimension) is simply a piecewise linear function
which agrees exactly with the sample CDF at the
boundaries between classes. :

The most common way to form such a histogram is
to divide up the sampie universe (set of all possible
phenotypes) so that each of the classes has an equai
size (u(@y) = u(¢y)). The main advantage of this
approach is that it is easy to impiement, but it has two
disadvantages. it sets an arbitrary lower bound on the
size of a feature which can be resolved, so that extra
classes may be needed in order to increase resolution.
Furthermore, in reai distributions a great many of the
classes wiil be empty or nearly so, i.e. many of our
estimators ¢; are approximations of 0-—noisy and not
very useful. Another approach is to fix the number of
events in each class g; and then seek a set of classes ¢;
which would yield a maximum likelihood estimator.

In one dimension, this approach has a particularly
neat solution, which has been explored by Wegman
{2.3]. If the sample X, . . . , Xais sorted into ascending
order, the result is a set of (non-independent) random
variables called the order statistics

Y|<...<Y1< Yi+|<...< Y,.

If we ask that every class have an equal number of
phenotypes, say ¢; = g, and seek a set of ¢, which give
maximum likelihood estimators of the form above, we
find that the boundaries of the histogram classes are
simply the corresponding order statistics Y.

&5 = [Yiy-nen Yi)

*Recail that we said that the sampie CDF F,.(x)
became closer to F(x) as more cells were sampied. It is
to be expected that {, will do the same thing. What we
do not know is how fast we can expect it to do so. i.e.
how big a sample size. n. we need before it converges to
a usetul extent. Convergence is usually measured by
the mean squared error (MSE) at each point x:

MSE[(x)] = E[{fu(x)—(x)})

This of course depends both on f(x) and on the ¢;
chosen. so we will consider a specific example, namely
a single variable histogram with equal width classes.
For a particular n. let the width of the interval be A,.

Then
¢/ = {(j= D)ha, jha)
@) = ha




1€. equal half-open intervals on the reul line (we
assume them starting at 0). The meun squared error is
{4]

2(x) |1 \
), L Ir(x')l=h2"+0<£+hg)

MSE[f(x)] <

Nity

where v" is the midpoint of the interval containing .
Integrating the MSE over all possible x gives the
integrated mean square error or IMSE. Now it can be
shown that

_ 2 ;3 -3
= [ﬁ'ﬂx»l ax| "

gives a globally optimum interval in the sense of
minimizing

IMSE(/,) < 3f{f (x)}? dx]'? n-23 +‘0<%+h9,)

Unfortunately, in order to compute this optimum, we
must know the first derivative of the function we are
seeking. The formula does. however, give us a means
of evaluating the rate of convergence in a qualitative
manner.

We have seen that the error in our histogram
decreases proportionally to n~%3 as the sample size. .
goes up. However. MSE decrease of 0(1~') is possible
theoretically (the Cramer-Rao lower bound), so we
see that the histogram is not an efficient estimator, i.e.
it requires more cells than are theoretically required
for a given degree of accuracy. Although the estimated
CDF is continuous, the histogram itseif is not and.
therefore, is not continuously differentiable, which
makes displaying it inconvenient. It is also not ‘robust’
with respect to A,, the class interval. If A, is 100 large,
useful information wiil be lost. If it is too small, the
function { can fluctuate unacceptably, and aparoaches
the derivative of the sampie CDF (as do aii maximum
likelihood estimators with large numbers of para-
meters). Also, in order to find the optimal 4., we must
know the first derivative of the true density ('(x). This
quantity will be large (which means 4, smaii and IMSE
large) when f'(x) is large, i.e. when the distribution has
very tight peaks in it. like those given by beads or
chromosomes.

We have seen then that histograms in general are
not ideal estimators. The search for a better estimator
was taken up by Rosenblatt in 1956 [5], and later this
method was generalized and investigated by Parzan
(6]. Rosenblatt estimators are functions of the form

1 ]
? - —— ‘x-..x-'-.x
(X) 5 I Y 4

imi
which we can also calculated directly from the sampie
CDF
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Fudx+h,)—F.(x—h,

i

?n(-\‘) =

which can be thought of as using u classification which
shifts along the axis staying centred on v rather than
being a fixed division of the line. i.e. ar each possible
phenotype we count the number of cells with phenc-
types within + A, of the chosen one.

If we seiect

) 9 1's
then approximately
IMSE = 5/4(9="32-%3%) [[{f"(x)}* dx]"S n=+

{4] which is substantially closer to the theoretical lower
bound. If we do not know f’(x), which is usuaily the
case, we can take an iterative approach to finding 4, by
estimating {’ from the data. It is in fact possible to
achieve MSE error decrease of 0(r~' In n), but
apparently only by relaxing the constraint that the
estimator { be itseif a probability density and allowing
it to take negative vaiues in some cases {4]. Since this
would cause difficuities for many applications, we
have to accept 0(n~+*) as the best we are likely to get.

In the above formulation, the indicator function. I.
which is flat in the middle and discontinuous at the
ends, may be replaced by a more suitable smooth
function (Parzen kernel), K(x), in which case the
estimator takes the form

1 -
f‘n(«‘f) = j.;' K<xh—> dF.(»)p

or

| S x—X;
fu(x) = — -
( ) hn igi K( hn >
This corresponds to covering over the infinities in the
maximum likelihood estimator with smooth functions
(the kernel function K(y)). Devotees of .Fourier
transform theory may recognize this as a version of the
convolution integral, and indeed we can regard this
process as filtering of the sample data by a filter with
band width controiled by A, and a non-physical
impulse response K(y/#.). A physical analogy wouid
be looking at a dot-piot with diffraction limited dots.
*A variety of kernel functions may be used. The
Gaussian distribution is an obvious candidate. The
Epanechnikov kernel [7] may be optimal for some
purposes

3 .
K(y)=z(l—y')lflyl <l

but when () is not known. a kernel which is smooth
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at the endpoints wiil probably be better for estimating
1t so

I -
K(y) = %{l =y forip <1

may then be a better choice. Both of these are
preferabie to the Gaussian kernel for computation
because they are zero outside of a finite interval. All
these kernel estimators have 0(n~*%) error decrease
and in fact nearly identical convergence properties (at
their respective optimal A,).

The ‘proportional area approach’ may be extended
to kernel estimation, by replacing A, with the distance
to the ¢'® nearest point. This becomes diificult when
more than one variable is involved, but a suitable local
hncan be computed from a preliminary approximation
of f{x) locally, i.c. using a large #, when the preliminary
estimate of the density is low and vice versa. This
operation is no longer linear with respect to Fourier
transform theory, but does offer the advantages of not
putting a global limit on the resolution and of
depending on a (crude) preliminary estimate of the
. value of the function rather than its second derivative
which is much more attractive numericaily. This is the
method we rely on for all our standard displays.

Graphical displays

Once an estimator {¥%(x) for a marginai (or condi-
tional) probability density function has been found, it
is natural to inspect it by graphical methods. Indeed
this is usually one of the first techniques taught in
algebra. For one variable, a line drawing of the
estimated probability density as a function of x (the
measured parameter) is adequate. This display should

" be normalized, so that a fixed area on the graph is
under the curve, because in probability analysis it is
this area which indicates the relative number of cells.
(This is because we are working with the density
function (derivative) rather than the distribution
function directly.) Normalizing the area allows the eye
to compare curves from different sampies in terms of
probability.

If the joint density of two of the vaniables (usually
cailed X and Y rather than X*) and XV) f(x,y) is to be
displayed, more compiex methods are necessary. The
most common approach is to note that the density
function can be used to define a two-dimensional
surface in R?, namely

Sf - ((x'YJ) | zZ= f(x,y)}

Such a surface may be physically modelled by a soiid
block with its top sculpted into reiief, as specified by
f(x,y), i.e. like a plaster ‘mountains and valleys' model.
This model is commonly simulated with computer

graphics‘by drawing perspective or orthometric pro-
jections of this surface (Fig. 30.1). When implemented
using current graphics techniques. such algorithims
take up a lot of computer time due to the need for
hidden line removal to make the surface appear
opaque and the desirability of making images of the
surface from muitiple view points. This model of the
surface has several free parameters. including the
scaling of z (probability density), and the position of
the ‘virtual camera’ in spherical coordinates, which
makes it difficuit for most users to specify the view they
want drawn.

A more subtle point that must be considered is that
the eye can be misled by the non-physical nature of the
surface being drawn. In the projected dispiays we are
exploiting depth cues used by the human visual
system. By simulating hidden lines and perspective we
cue the eye to the relative depth of the facets of the
surface. (When real time hardware rotation is avail-
able the kinetic depth effect may be used for the same
purpose.) When analysing such scenes the eye seems to
decompose them by edges and by boundary concavi-
ties. This means that the eye tends to evaluate objects
based on their shape and perimeter. whereas in
analysis of probability density functions it is the
voiume of the block underneath the feature which is
important (because we are using the derivative of
probability). In more familiar terms, the problem is
that the eye cannot readily compare the volume of
objects of radically different shapes, and thus cannot
compare the significance of a broad (high variance)
distribution, compared to a narrow (low variance)
one. For example, most people could not compare the
amount of stone in the Washington monument with
the amount of water in the reflecting pooi with any sort
of accuracy. This type of situation is unfortunately ail
100 common when a highly variable stained subpopu-
lation of cells is present together with an unstained
one. (Fig. 30.1 is of chromosome data, for which this is
not usuaily a problem.) :

Another common technique for displaying bivariate
distributions s to draw a selection of the level curves of
the density function, or a contour map My, as follows:

Co(2) = 1(xy) | = =ty
where
<siviandi=1,..., n—1

are the ‘contour levels’. The most natural way to éssign
z;, is equally spaced, i.c. a topographic or ‘geologicai
survey’ map (Figs. 30.2 and 30.3, panei A).

. Fd
Zi = 12y

This approach uses one free parameter (namely z,, the
height of the first contour) which must be assigned by
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Fig. 30.1. (a) A perspective view of a dual variable histogram. This presentation shows the similarity to a mountain range.
The mathematical function which maps the x.y plane to the surface of this ‘mountain range’ is the probability density
function in the text. (b) A contour map of the same data. The data shown is a flow karyotype of human-chromosomes.
(Kindly suppiied by Dr Joe Gray of the Lawrence Livermore Laboratory.)

the user. In practice, the dispiay is very dependent on
this parameter. Therefore the user must learn to

manipulate a single relatively arbitrary parameter’

whose significance is even less intuitive than spherical
coordinates were. Indeed, the user probably stiil needs
to make mulitiple maps in order to validate a choice of
z;. When the choice of z) is inadvertently made too
small, inordinate amounts of computer time can be
wasted, blacking large regions of the paper. Alternati-
vely, if it is chosen too high, significant features may
not show up at ail. On the positive side, these maps are
generaily easier and quicker to generate than projected
views, especially when floating point hardware and
large amounts of memory are not availabie. In the
authors’ experience (with the limitations cited above)
they are easier to interpret than the projective displays
but the authors have never generated a fool-proof
heuristic for selecting z; automatically.

In the case of contour maps. a learned (for those of
us who were boy scouts) ability to correlate topogra-
phical maps with landmarks is expioited. In such
maps, the eye responds to the contours as the edges of
figures; in particular, those in piaces where many such

curves are close together are emphasized. This means

that the eye’s response is roughly proportional to the
grade of the surface or the magnitude of the gradient
of the density

I Vfxy) | = {(df/dx)*+(df/dy)}}'?
This is the same way that you would measure the

steepness of a road, e.g. 6 ft climb per 100 ft travelled.
Now, unfortunately, the non-physical nature of the
situation comes in to play again. In maps drawn of the:
real world, this quantity is both important, because a
large gradient indicates the presence of cliffs which the
average pedestrian will avoid, and is also limited by the
strength of tlie materials involved. The relief of
features on the surface of the earth is quite smalil
compared to the diameter of the earth, and is relatively
small even compared to the area covered in most
topographic maps. If this were not true, such maps
would be nearly useiess. As any rock climber couid
certainly tell you, such a map gives no information as
to how or even whether a given cliff can be climbed.
The earth is smooth at such large scales mainly
because rocks crumble and weather. However, proba-
bility densities do neither. and. therefore, the grade
can assume reaily large values over smail areas (the
Washington monument anaiogy is severely under-
stated). The resuit is that the eye is again fooled into
overvaluing tight distributions with respect to broad
ones.

In order to overcome these problems and select a
more useful set of contour levels, z,, we will steai a page
from image anaiysis and use the f(x,y) to represent
intensity over the plane. i.c. a TV image, rather thana
surface or solid in R3. Again, the non-physical nature
of the function defeats the naive approach since no
usabie display device has anything like the dynamic
range of a PDF. However, the eye can readily interpret
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Fig. 30.2. Four different contouring methods. In these figures the vertical axis corresponds to the z axis of Fig. 30.1, the

heights of the mountains.

Panet A shows equal contour spacing. The coniour eleva-
tions are chosen such that the intervais between them
(along the z axis) are the same. This is the form of
contouring found on geographic 10po maps, and is what is
offered on most simpie computer systems. Equai spacing
tends to put all of the contour lines on the highest peaks,
and often does not show enough detail of lower features.
Also, adjacent contour lines at different elevations may
contain grossly different numbers of ceils between them
(see panel D). This method is referred to in our literature
as equai ‘density’.

Panel C shows equal area contouring. The contour eleva-
tions are chosen such that the resuiting contour lines have
cqual areas of paper between them. The coloured annuiar
sections in the figure all have the same area. Because the
width of the annulus must decrease as the radius increases,
this method tends to put more contour lines in areas
furthest from peaks. Thus this method is useful in defining
the regions between cell populations (i.e. for setting sort
windows).

Panel B shows logarithmic contour spacing. The contour
clevations are chosen such that their elevations have fixed
ratios, in this case 50%,. This method puts more contours
in the lower regions, while still showing the heights of the
peaks.

Panel D shows equal probability contours. The contour
clevations are chosen such that there are equal numbers of
cells between the resuiting contour lines. The number of
cells is proportional to the voiume of mountain. The
volume defined by the region abb’ (volume of rotation
about the axis of the peak) is the same as the volume
defined by the region bb'c’c.
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Fig. 30.3. Contour maps produced by each of the four contouring methods expiained in Fig. 30.2. The data shown is igM

vs. Igh-5a for whole spieen celis from a CBA/N (immunodeficient) mouse.

Panel A: note that almost haif of the contour lines are Panel B: there 1s no crowding at the peak of negatives. and

crowded into the peak of negatives near the onigin, and some detail of lower features can be seen.

that there is no detail of lower siopes. Panei D: both high and low features can be seen: 10% of

Panel C: the valley between the two main populations, the the cells are in the region between the first contour and the

optimum point to separate the two popuiations, is made border: 10% are in the region between the first and second

clear. contours, etc. Note that the region between the second and
third contours is divided between the two peaks. The

number of cells in the union of these two regions add up to
10% of the total.
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an image whose dynamic range is compressed as long
as relative intensities are preserved (or sometimes even
inverted} and sufficient edge contrast remains. (Wit-
ness the success of TV.) Therefore we will turn to the
technique of monotonic point transforms, i.e. for a
strictly monotonic function on R

t: R— R such that x> y==t(x) > t()
the function f may be transformed ‘point-wise’ by it as

T:f=tof
TIE]: (x.p) = tf(x, )]

One obvious function, which preserves this prop-
erty. is the logarithm, and indeed graphs and contours
of In{f] are frequently used (Figs. 30.2 and 30.3, panei
B). This model has two free parameters, namely the
ratio r = z,/z,,., <1 of successive contour levels and
implicitly the number of contours (or equivalently the
minimum contour level) since the range of Injf]
extends to —co. It is not too difficuit to select these
parameters heuristically so that they usually produce a
reasonable display; however, there is no obvious
rejation between visual features and volume (probabi-
lity) and it is difficuit to compare maps drawn with
different values of r.

So far we have iooked at contour intervals which
were completely generai, i.e. independent of f(x,y).
Now we wiil look at two ‘data driven’ approaches, in
which the monotonic transform used is itself derived
from the distribution. Consider the set of points where
the density is less than a specified level, i.c. the
‘background’ of the image

Be(2) = {(x,y) | f(x.y)<z}

This can be thought of loosely as a background for
biological data as weil since it corresponds to the set of
observed phenotypes whose estimated frequency is
less than z, i.e. the rare phenotypes. If f is a well
behaved function (C*) then this set is also weil behaved
(Borel, or ‘an event'). There are two obvious means of
measuring this set. We will consider first the area

ar(z) = p{(x.y) | f(x.p) <z} = p{Be(z)}

where 4 is Lebesque measure. i.c. the area over which
the density is iess than the specific z. It is well defined
and monotenicif f(x,y) has finite support. (The area of
the complement of By is clearly. always finite but
defining A[f] in terms of it woulid introduce a piethora
of — signs and physical observations that are by
nature finite.) A few moments’ reflection shouid reveal
that this function is a sort of ‘invariant’ operator for
our set of monotonic point transforms, because for a
density f and any two other monotonic point trans-
forms, G and H,

A H[f] = A>GIlf] = A[f]

Antibody interaction with soluble and cellular antigens

and it thus might be a good candidate for display.
Equally spaced contours drawn on Alf} separate
regions of equal area (Figs. 30.2 ana 30.3, panei C).

*This technique is known as “histogramming’ in
image analysis. because the usual way to compute aris
1o histogram the number of times each grey level
occurs in the image. This usage conflicts with ours
where the histogram refers to a density estimator. Its
use in image analysis is related to its invariance
property, since such an image is invariant when
transmitted tiarough a ncn-linear transmissior, systein
as iong as the transfer function remains monotnic.
For our purposes (since the range of f is not as
precisely known as the number of grey levels usua.lyis)
it will be more expedient simply to sort a finite set of
values of f(x.y), say f; = {(ixy, jy\) (i.e. our version of
the histogram), into ascending or descending -rder.
Then, knowing that the measure of each class in our
histogram is x,y), we can interpolate the sorted list to
approximate each of the equal area contour leveis.
Note that rather than actuaily computing the trans-
formed value of each point of the surface, we usually
prefer to compute the z; corresponding to equally
spaced contours on A[f).

* Because A{f] preserves only the relative order of
the values of f when equaily spaced contours are
drawn on A[f], they are as likely to occur where f is
smail as where it is large. This means that in some sense
this transform preserves the least possible structural
information (i.e. only order) and in fact, when aver-
aged over a suitable area (the contour interval), such a
contour map contains no information. This means
that if a slide made by this method is sufficiently out of
focus, the contour map wiil disappear into a uniform
grey. The useful aspect of this property is that it does
visualize the distribution in regions where the probabi-
lity density is low. These regions are of interest mainly
in elucidating the exact boundaries or boundary
overlaps (say for sorting) of a previously identified
subpopulation.

The second measure of the background B¢(z) and
the most interesting transform with regard to auto-
matic first pass analysis. is based on the function

pr(z) = Pr{f(X,Y) <z} = Pr{Br(z)}

Where X and Y are random variables distributed as
f(x,y) and therefore f( X, Y) is aiso a random variable.
This function corresponds to the probability of the
background event B(z) discussed above, i.c. the
probability that a ceil will have a phenotype whose
density is less than z or, in other words, the total
frequency of background (rare) phenotypes.

Equally spaced contours on the surface PIf] wiil
separate regions (events) of equal probability (Figs.
30.2 and 30.3. panei D). Finally, we have a represen-
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tation in which the visuai cues (the edges) have equal
significance in terms of the probability distribution.
Also. the spacing between contours in such a mapisa
true probability. and indeed any subpopuiation
(simply connected Borel set) which has a probability
greater than the interval must be crossed by at least
one contour line. Thus the ‘equi-probability’ contour
model has a natural significance value which the user
can assoctate with the data. namely the size of the
smaliest subpopulation of interest. which gives very
satisfactory results entirely automaucally from that
point on.

In order to compute the function py, we first sort the
histogram class values f; as above. and note that this
function is the first difference of the function we need.
Then performing a finite summation on the sorted
data allows us to interpolate a suitable set of contour
levels z, corresponding approximately to equaily
spaced contours on P(f].

Data anaiysis in flow cviomerry  30.11

References

FisHER R.A. (1922) On the mathematical foundations of
theoretical statistics. Phil. Trans. Roy. Soc. Lond. (Series
A), 222, 309.
WEGMAN EDWARD J. (1970) Maximum likelihood estima-
tion of a unimodal density function. Ann. mazh. Statist. 41,
457.
3 WEGMAN EpwaRD J. (1970) Maximum likelihood estima-
tion of a unimodal density. II. Ann. math. Statist. 41, 2169.
4 TAPIA RICHARD A. & TOMPSON JAMES R. (1978) Nonpara-
metric Probability Density Estimation. The Johns Hopkins
University Press. Baltimore.
ROSENBLATT M. (1956) Remarks on some nonparametric
estimates of a density function. Ann. math. Statist. 27, 832.
PARZEN E. (1962) On estimation of a probabiiity density
function and mode. Ann. math. Statiss. 33, 1065.
EPANECHNIKOV V A. (1969) Nonparametric estimates of a

muitivaniate probability density. Theory Probab. Applic.
14, 153.

ta

w

=)







