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The development and repertoire of B-1 cells

Hayakawa and co-workers® orig-
inally distinguished a subset of
mouse B cells that bear low levels of
the pan-T-cell glycoprotein Ly-1
(CDS). These Ly-1* B cells (now
called B-1a cells!) have received in-
creasing attention in the subsequent
eight years, mainly because of the
existence of a homologous popu-
lation in humans, their high rep-
resentation in chronic lymphocyte
leukemia in humans and mice, and
their potential importance in auto-
immune disease. This report focuses
on two major themes: (1) the charac-
terization of differences among
B-1a, B-1b and conventional B (also
known as B-2) cells and (2) evidence
that classifies these populations as
separate lineages in the mouse.

Phenotype

B-1 cells can be distinguished from
conventional B cells by anatomical
localization, functional character-
istics and gene expression. The ex-
pression of a series of cell surface
molecules detectable by flow
cytometry was discussed (for re-
views, see Refs 3=5). All B-1 cells in
the mouse are bright for immuno-
globulin M (IgM) and dull-to-
moderate for IgD and B220. In con-
trast, conventional B cells are dull
for IgM, and bright for IgD and
B220. In the peritoneal cavity, B-1
cells are Macl(CD11b)* (A. Stall,
Columbia Univ.) and FceR(CD23)~
(T. Waldschmidt, Univ. of lowa),
while conventional B cells are
Macl- and FceR+. However, these
two markers are less useful in the
spleen as Macl is not expressed on
splenic B-1 cells, and both splenic
B-1 cells and marginal zone B cells
lack FceR.

Mouse B-1 cells can be divided
into two very similar populations,
B-1a cells, which express detectable
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A small subset of mouse and human B
cells produces much of the serum im-
munoglobulin, including many com-
mon autoreactive antibodies, and
accounts for most cases of B-cell
chronic lymphocytic leukemia. An ex-
citing recent conference® focused on
the development, repertoire and lin-
eage classification of these cells. The
meeting was convened for a discussion
of ‘CDS B cells’ but ended with a
discussion of ‘B-1 cells’ (see Ref. 1).

levels of surface CDS, and B-1b cells,
which do not. Within experimental
limits, each of these B-1-cell popu-
lations replenishes itself, but not
the other, when transferred into ir-
radiated recipients with congenic
bone marrow (Stall).

H. Wortis (Tufts Univ., Boston)
showed that cultured conventional
B cells from spleen (Ig-D
CD5-CD23*) can be induced to
gain CDS, lose CD23 and express
low levels of IgD following treat-
ment with anti-w and interleukin 6
(IL-6), but not lipopolysaccharide
(LPS)6. These cells do not express
Macl in culture. It is not known
whether or not they self replenish
when transferred into irradiated re-
cipients, and whether or not they
express Mac-1 in the peritoneal
cavity.

CD72 is the ligand for CDS

K. Thielemans (Vrije Universiteit,
Brussels) and J. Parnes (Stanford)
identified the B-cell surface protein
CD72 (Lyb-2 in mouse) as the ligand
for CDS (Ly-1)”. CD72 is present on
pre-B cells and all mature B cells but
is absent from plasma cells. Investi-

2The New. York Academy of Sciences
Confererice on CDS B Cells in Develop-
ment and Disease, organized by Leonore
Herzenberg, Geoffrey Haughton and
Klaus Rajewsky, was held in West Palm
Beach, Florida, USA on 3-6 June, 1991.
The proceedings will be published by the
New York Academy of Sciences.
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gation of the CD5-CD72 inter-
action may provide insights into the
differences between B-1 and conven-
tional B cells and into T-cell-B-cell
communication. Thus far, there are
no known funcrional differences be-
tween B-1a and B-1b cells; however,
the presence of both Lyb-2 and Ly-1
on B-1acells, butonly Lyb-2 on B-1b
cells, suggests that such differences
will be found.

Self replenishment, feedback
regulation and IL-10 help define
B-1 cells

What physiological character-
istics can be used to distinguish be-
tween B-1 and conventional B cells?
First, B-1 cells maintain their num-
bers by self replenishment; conven-
tional B cells do not. Second, B-1
cells exert a feedback regulation that
limits de novo production of B-1
cells from progenitors, starting at
about the time mice are weaned®.
Third, as described by A. O’Garra
(DNAX, Palo Alto), IL-10 is pro-
duced by LPS-stimulated B-1, but
not conventional B, cells. Moreover,
M. Howard and H. Ishida (DNAX,
Palo Alto) suggested that IL-10 may
be an autocrine factor that is essen-
tial for B-1-cell development. They
showed that animals treated from
birth with anti-IL-10 antibodies
have normal levels of cells in the
spleen and thymus, but are B-1 cell
deficient, with essentially no B cells
in the peritoneal cavity. Consist-
ently, these mice have reduced levels
of serum IgM.

Repertoire

B-1 cells are disproportionately
represented in the production of
autoreactive antibodies and use a re-
stricted set of V genes. H. Gu and
K. Rajewsky (Institut fiir Genetik,
Koin) presented two important
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results based on analyses of gene
expression from polymerase chain
reaction (PCR)-amplified cDNA li-
braries of sorted B-cell populations.
First, nontemplated N-region se-
quences are rarely inserted in the
B-1a cells that arise earliest in on-
togeny’. Some of these B-1a cells
maintain themselves by self replen-
ishment throughout the life of the
animal. B-1a cells arising later
(>1 month) have more N-region
diversity and in this sense are more
similar to conventional B cells. Sec-
ond, positive selection is important
in determining the repertoire. Pre-B
cells from neonatal liver or adult
bone marrow appear to utilize a
wide range of Vi, genes within the
large J558 family. In contrast, per-
ipheral B cells, both B-1 and conven-
tional B, show dominant expression
of particular Vi genes in J558. The
Koln group postulates that positive
recruitment between the pre-B and
B-cell transition brings all peripheral
B cells into a long-lived pool!0-!!,

Since B-1 cells develop early in
ontogeny, repertoire differences
may, at least in part, reflect selection
by different endogenous antigens,
including anti-idiotypic B cells (M.
Vakil, Univ. of Alabama, Birming-
ham), present in the fetus and not
in the adult. K. Hayakawa (Fox
Chase Cancer Center, Philadelphia)
and others presented evidence that
positive selection by endogenous
antigens is a major mechanism for
" the germ-line-encoded antibody
specificities prevalent in the B-1-
cell population. This results in an
increased level of anti-thymocyte
autoantibodies and anti-phospha-
tidyicholine (PtC, also known as
anti-bromelain-treated mouse red
blood cells (BrMRBC)) antibodies in
the B-1-cell population. Anti-PtC
hybridomas show multiple, indepen-
dent rearrangements using V11
(Hayakawa), as has also been ob-
served in lymphomas and with V12
(S. Clarke, Univ. of North Carolina).
PCR amplification of sorted pre-B
and B cells from the adult bone mar-
row indicates that conventional B
cells also rearrange V;11,although
subsequent selection does not
occur!2,

Finally, Hayakawa presented pre-
liminary data from V11 transgenic
(Tg*) mice, which do not have B cells
with endogenous rearrangements.

There is an over-representation of
B-1a cells and the anti-PtC specificity
is restricted to the Tg+CD5+ B cells
and absent in the Tg*CDS5~ B cells.
No increases in B-1a cell frequency
are observed when the transgene en-
codes for a specificity normally at-
tributed to conventional B cells!3.
Hayakawa and Hardy conclude that
the usg of a ‘preferred specificity’ can
resultin the expansion of the B-1a
population.

A3 knock out

Perturbations in B-cell develop-
ment ;are also observed when the
AS gene is knocked out by homolo-
gous recombination (D. Kitamura,
Rajewsky; A. Kudo, F. Melchers,
Basel). AS is part of the pseudo-light-
chain| complex, p—yL, which con-
sists of . chain in association with
A5 and V pre-B proteins and is pres-
ent on some pre-B cells; it is pre-
sumably involved in Vy-positive
selection prior to light chain syn-
thesis, Loss of A5 does not affect B-1-
cell development in the peritoneum
or spleen; however, there is a much
delayed development of B-2 cells.
This may reflect the decreased sus-
ceptilj‘ility of B-1 cells to pertur-
bations in B-cell development and/or
their characteristic ability to self re-
plenish from surviving cells.

Demanstration of distinct B-cell
lineages

Three independent groups, with
different experimental systems, in-
troduced evidence for distinct B-1-
and conventional B-cell lineages.
The question of separate lineages is
best addressed early in the differen-
tiation pathway, that is at the pro-
genitor (stem cell) level. R. Hardy
(Fox Chase Cancer Center, Phila-
delphia) demonstrated that hemato-
poietic stem cells (HSC), enriched
by sorting Thy-1'/Lin- (including
B220") cells from fetal or neonatal
liver, readily repopulate B-1 cells
in irradiated severe combined
immunodeficient (SCID) recipients;
however, similarly sorted and trans-
ferred HSC from adult bone marrow
do not. In separate experiments,
Hardy showed that adult bone mar-
row pro-B cells (B220+CD43*HSA ™)
recorftitute mostly conventional B
cells'*, while similar fetal liver pro-B
cells yield only B-1 cells. Thus pro-B
cells, ' which have undergone Dy~

but not Vi-Dyjy; rearrangement
are committed to particular lineages
when isolated from fetal versus adult
sources.

N. Solvason and J. Kearney (Univ.
of Alabama, Birmingham) demon-
strated the independent develop-
ment of B-1- and conventional B-cell
lineages in a cell transfer system.
They showed that progenitors that
give rise to B-1 cells, but not those
that give rise to conventional B cells,
are present in the 13-day fetal omen-
tum. Thus, B-1 cells, but not conven-
tional B cells, develop at a distinct
site associated with mesodermally-
derived peritoneal lining. Fetal
liver, which may also include meso-
dermal tissue, yields both B-1 and
conventional B cells’S. The human
fetal omentum is also a site for B-cell
generation with a bias toward the
production of B-1 cells (Solvason).

Finally, the existence of indepen-
dent B-cell progenitors was demon-
strated by the co-transfer of 14-
day fetal liver (BAB strain, IgH b
allotype) and adult bone marrow
(Balb strain, a allotype) into ir-
radiated recipients. Although fetal
liver is capable of reconstituting
both B-1 cells and conventional B
cells, the development of these B-cell
lineages from progenitors was
shown to proceed independently. In
some co-transfer recipients, all con-
ventional B cells were derived from
the bone marrow source, The fetal
liver reconstituted B-1 cells in these
recipients, but failed to reconstitute
conventional B cells (A. Kantor).

Progenitors for B-1a and B-1b cells

Kantor and Stall distinguish pro-
genitors (B220~) for B-1b cells from
progenitors for B-1a cells by their
ability to persist into aduithood.
Progenitors for B-1a cells, although
abundant in fetal liver, diminish
with age and are rare in adult bone
marrow. Progenitors for B-1b cells
are also active in fetal liver (and
omentum, Solvason); however, in
contrast to the progenitors for
B-1a cells, they readily persist into
adulthood, as evidenced by bone
marrow reconstitution ' of perito-
neal IgMtrIgDl°Mac1+CD23~CDS5-
cells. Pro-B cells, isolated from fetal
liver and adult bone marrow by
Hardy also reconstitute peritoneal
cells with the B-1b FACS-phenotype
(IgMbrIgDlCDS5 -).
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Several questions were raised re-
garding the equivalence of B-1b cells
in normal animals (or fetal liver re-
cipients) and B-1b cells that arise
from adult bone marrow transfers. It
is not yet clear whether the bone-
marrow-reconstituted B-1b cells can
self replenish and produce IL-10.
The repertoire of bone-marrow-
derived B-1b cells and fetal-derived
B-1 cells also needs to be compared.
The extent to which B-1b cells are
repopulated from progenitors in the
normal adult bone marrow is also
unclear. A feedback mechanism
limits the emergence of both B-1a
and B-1b cells from their progenitors
starting at two-to-three weeks of
age, forcing these cells to persist sub-
sequently by self replenishment®.

Questions regarding lineage

The issue of lineage assignment
was the most actively debated topic
at the meeting. L. Herzenberg (Stan-
ford) stated that there was compel-
ling evidence for three independent
B-cell progenitors and hence three
distinct B-cell lineages (described
above). She further proposed a glo-
bal model of lymphocyte develop-
ment, based on the existence of three
stem cells (lymphoid progenitors),
each capable of yielding specific sets
of T and B cells!é. She suggested that
B-1a cells and early 43 T cells rep-
resent the most primitive layer of the
immune system, whereas conven-
tional B cells and «B T cells represent
the most developed layer. K. Ikuta
(Stanford) supported the connection
between the fetal-derived B-1a cells
and the early ¥d cells. He showed
that Vy3 T cells can arise from fetal,
but not adult, HSC.

Most of the lineage discussion,
however, focused on the validity of
the B-cell assignments. Hardy and
Hayakawa agreed with the B-la-
versus conventional B-cell lineage
distinction; however, they withheld
judgement on the designation of
B-1b cells as a separate lineage,
awaiting further demonstration of
the equivalence of fetal-derived B-1b
and adult bone-marrow-

Wortis, who had previously ques-
tioned the existence of two B-cell
lineages®, concurred that fetal and
adult-derived B cells represent separ-
ate lineages. At present, he questions
the relationship between fetal pro-

genitors and mature CDS* B-la
cells. Wortis argues that the func-
tional phenotype of B-1a cells in vivo
is a consequence of surface IgM
(sigM) crosslinking by antigens with
repetitive epitopes, that is thymus-
independent, type-2 antigenic stimu-
lation. He presumes that fetal-
derived B cells are much more likely
than adult-derived B cells to enter
the B-1a pathway solely by virtue
of their distinct repertoire, which
includes specificities with a high
chance of encountering endogenous
or common exogenous sigM-
crosslinking antigens. As discussed
at the meeting, this mechanism has
not vet been demonstrated in vivo
and is inconsistent with several types
of evidence. With respect to reper-
toire, Rajewsky’s group has shown
that the V}, gene usage of adult and
fetal pre-B cells are similar within the
J558 family and that N-region inser-
tions are observed in B-1a cells aris-
ing at four weeks. With respect to
stumulation, Hayakawa has shown
that, three-to-four days following
trinitrophenol (TNP)-Ficoll immu-
nization, all ant-TNP plaque-
forming cells in the spleen are CD5~
(Ref. 17), and Rajewsky presented
data showing that B-1a cells can give
a T-cell-dependent response to PC.

On another issue, Howard raised
the question as to whether micro-
environmental factors (for example,
local cytokines and different stimu-
latory pathways), rather than re-
strictions in the developmental po-
tential of donor cells, could control
progenitor development into B-1 or
conventional B cells. Although not
discussed in the plenary sessions,
data from the co-transfers rule out
this possibility. That is, all sites in a
recipient should be equally access-
ible to injected progenitors. If the
progenitors from bone marrow and
fetal liver are functionally equival-
ent, and if the site at which a given
progenitor lands controls its de-
velopment, then the progeny of the
co-injected progenitors from bone
marrow and fetal liver should be
proportionately represented in all
B-cell populations. Kantor and Stail
showed this is not the case; the distri-
bution of B cells derived from adult
bone marrow (few B-la cells) is
clearly different from that derived
from fetal liver (many B-1a cells) in
co-transfer recipients. Thus, the
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B-cell developmental potental is
inherent in the progenitors, rather
than solely determined by micro-
environmental factors in the
recipient.

Thanks to H. Gu, Len Herzenberg, M.
Howard, J. Kearney, ]. Parnes, A.
O’Garra, K. Rajewsky, K. Seidl, A. Stall
and D. Tarlinton, for critical comments
on the manuscript. Special thanks to R.
Hardy, K. Hayakawa, Lee Herzenberg
and H. Wortis for providing manuscripts
and/or detailed comments.

Aaron Kantor is at the Dept of Gen-
etics, Stanford University Medical
Center, Stanford, CA 94305-512§,
USA.
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