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TECHNICAL NOTE

Pattern Sorting: A Computer-Controlled |
Multidimensional Sorting Method Using K-D Trees!—3
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Multidimensional binary trees provide
a memory efficient and general method
for computing sorting decisions in real
time for a flow cytometer. Their funda-
mental advantage over conventional
lookup table sorting techniques is that
sort criteria in the full N-dimensional
data space which cannot be described by
projections onto two-dimensional param-
eter planes can be effectively imple-
mented. This becomes particularly rele-

vant when multidimensional analysis
methods such as principal components
or clustering are employed. We describe
a prototype implementation of this
method and point out other possible
implementations. © 199¢ Wiley-Lisa, Inc.
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Many investigators (2,10), including ourselves, are
actively involved in developing a new class of analysis
methods for determining cell populations in flow cyto-
metric data. A feature of these methods is that the full
dimensionality of the flow data is used at once to de-
termine relevant cell populations. Two examples of
such methods are cluster analysis and principal com-
ponent analysis. Once populations are analyzed, fur-
ther biological studies may well require the physical
sorting out of such populations. However, there is no
guarantee that sort regions defined on populations de-
termined by these methods can be described ade-
quately by intersections of regions in the one- or two-
dimensional marginal distributions of the data. For
example, in principal component analysis a bivariate
plot of the first two principal components may involve
both a rotation and translation of the original data.
The conventional methodology of implementing com-
Puter-controlled cell sorting using one- and two-dimen-
sional lookup tables (“bit mapped” sorting) can there-
fore fail to represent adequately a sort region defined,
e.g., as a polygon on a plot of the first two principal
components of a data set.

Higher dimensional lookup tables are possible, but
they need prodigious amounts of memory to maintain
high resolution. For example, if the flow data have 8

bit resolution (256 measurement channels per param-
eter), an 8 parameter lookup table will require approx-
imately 10'® bytes of memory, a number not technolog-
ically feasible at this time. Using lower resolution flow
data can reduce the amount of memory needed. For
example, 8 parameters of 5 bit flow data (32 measure--
ment channels per parameter) could be sorted using a
lookup table 1 gigabyte in size. However, such low res-
olution would probably not be acceptable for many flow
applications. Thus, to sort cells at full data resolution
according to generalized analysis requires a different
approach.

PRINCIPLE OF PATTERN SORTING

We call our approach to generalized sorting pattern
sorting because it can implement any pattern of sort
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decisions in N-dimensionai data space, no matter how
the pattern is generated. The method begins with a
training set of data which is analyzed by any method-
ology to.specify sort criteria for each cell. This is usu-
ally done in terms of sorting regions defined geometri-
cally (gating), but any method which assigns a unique
sort decision to each cell is acceptable. The classified
N-dimensional training set is next split into hyper-
cubes, each containing only one cell of the data set.
This resuits in many small hypercubes in areas of
dense data and large ones in areas of sparse data. Each
hypercube is then assigned the sort decision of the cell
of the training set it encioses. Finally a computer pro-
gram (the sort program) is generated which deter-
mines, for each cell subsequently run through the flow
cytometer, which cube it is a member of. This program
then returns that cube’s sort decision to the cytometer
for implementing the physical separation process.
The execution speed of the sort program, as well as
its data acquisition path, are the time-critical aspects
of pattern sorting. For a jet-in-air sorter with a typical
jet velocity of 10 m/s, and a break-off point 6 mm below
the laser interrogation spot, the charging pulse for a
particular cell occurs approximately 600 us after the
measurement is made. Although instrument design
may impose other constraints, the sorting process itself
requires that all analog and digital processing of the
event data required to generate a sort decision must
complete before this time expires. Since the time inter-
vals between cells are, at best, random within an ex-
ponential distribution (5,6), we must allow for pileup of
events. For example, a data transfer and sort decision
calculation time of 100 us would permit event rates
approaching 10,000 per second without frequent 600 ps
overruns. Both software design and computer hard-
ware configurations affect the ability to achieve this
100 us throughput for event processing. As described
below, we achieve this on slow and obsolete computer
hardware for our prototyping system, thus showing the
robustness of the software approach we developed. Dif-
ferent hardware technologies for data transfer and mi-
croprocessor design would result in a system that is
significantly faster than the one we demonstrate. How-
ever, a properly implemented bit-mapped sorting

- scheme, using equivalent hardware and doing the

lookup tables in parallel, will always be faster than the
approach described here.

Our approach relies heavily on k-d trees. They are
used to decompose the training set data into the N-di-
mensional hypercubes as indicated above. The result-
ing tree is then compiled into an assembly language
program which is loaded into a dedicated processor and
run. As mentioned, this methodology does not, in and of
itself, provide a speed increase over bit-mapped sort-
ing. Its usefulness lies in its generalized approach to
sorting classified populations.

Thus, the steps in pattern sorting are summarized as
follows: 1) collect and analyze a data set to determine
sort criteria; 2) construct a balanced k-d tree on this

Root
Criterion0 |

Level 1

Level 2

 |Criterion1

Leved K

Fi. 1. Constituent parts of a k-d tree. A k-d tree consists of nodes
with splitting criteria and paths connecting them. The top node of the
tree is called the Root; here it is partitioned by Criterion 0. When
traversing the tree, the split criteria at the current node is evaluated
to determine whether the next node to visit is the left child or the
right child. In this tree, the left and right children of the Root are
Nodes 1 and 2, and they contain Criterion 1 and Criterion 2, respec-
tively. The last node in a path is calied a Leaf. The depth of the tree
is the number of levels between the Root and the Leaves. For a bai-
anced tree, all Leaves will be on the same level. The aimost-balanced

trees constructed for pattern sorting have ail Leaves within two lev-
els.

data set using the resuits of that analysis; 3) prune the
k-d tree; 4) generate a sort program from the pruned
tree; and 5) load and run the sort program. These steps
are described in the next sections.

PROCESS OF PATTERN SORTING
Collect and Analyze a Data Set to Determine
Sort Criteria

Pattern sorting does not require a particular method
be used to determine sort criteria. What is important is
that the analysis end up by classifying each event (cell)
in a data set from the sample to be sorted. Typical
classifications are LEFT, RIGHT, and NOSORT:; how-
ever, our method is general enough to apply to instru-
ments with more than two sort streams or for applica-
tions other than flow cytometry. This classified data
set, for reference, is called the training set.

Because pattern sorting will approximate the sort
regions by a composite of hypercubes, it is important to
have a large enough training set to delineate these
regions adequately. Figure 4 (see later) demonstrates
this clearly. Where the events are dense (the bottom of
the sort regiorn), the generated hypercubes approx:-
mate the specified sort boundary closely; where thev
are sparse (the top of the sort region), the approxima-
tion is coarse. For most sorting applications this wiii
not matter because the exact sort boundary tends to be
arbitrary in regions of low cell event frequency. [f it 1+
absolutely necessary to exclude cells that fall in a «cr-

tain region, then the final hypercube boundaries w:il -

i
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Fic. 2. Exampie of a k-d tree partitioning. A: A two-dimensional dot plot with 5,000 events of FACS
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need to be adjusted, an easy extension to our process
that we do not address in this note.

Moreover, the higher the dimensionality of the data
space, the larger a training set needed to adequately
decompose it. We have not yet developed analytic cri-
teria for this. Anecdotal investigations indicate that
while three-dimensional distributions are adequately
described using 10,000 or 20,000 event training sets, 8

parameter distributions may require 100,000 events or
more.

K-D Tree Generation

Since their introduction in 1975 (1), multidimen-
sional binary search trees (abbreviated k-d trees where
k is the number of dimensions) have found numerous
applications in diverse fields such as databases, com-
putational geometry, and pattern recognition (8,9).
Figure 1 describes the salient parts of a k-d tree. The
k-d-tree decomposition of the training set produces an
almost-balanced tree whose depth is LOG5(n), where n
is the number of points in the training set. We will
demonstrate the technique on a two-dimensional data
set for ease of drawing; the extension to higher dimen-
sionality will be clear.

Consider the 5,000 event dot plot of FACS data
shown in Figure 2A. The leaves of the k-d tree decom-
position, as shown in Figure 2B, are represented by
rectangles, each containing one event. Thus, if another
cell is randomly selected from the same sample which

generated Figure 2A, it has equal probability of falling
in any of these rectangles.

To construct this decomposition in two dimensions,
one starts with the rectangle formed by the entire data
space as the root of the tree. This root rectangle con-
tains the entire training set and is divided into two
rectangles by the median of the data on the parameter
which has the largest range, producing two nodes, each
of which contains half the training data set, which are

children of the root. In the example shown, it is only

necessary to consider the X and Y parameters, but if
the training set contains more than two parameters,
then each will have to be scanned to find the one with
the largest range. Each of these two rectangles is sub-
sequently divided in the same manner, producing four
rectangles. As before, for each rectangle, all parame-
ters of the data contained in that rectangle are evalu-
ated and the split occurs on the median of the param-
eter with the largest range. This process is repeated
until each rectangle contains only one data point.
These rectangles are the leaves of the tree. Figure 3
shows the first few divisions, together with the corre-
sponding k-d tree that is internally constructed along
with this division.

Now each point in the data set has an associated sort
decision defined by a user analysis. In the exampie
shown in Figure 4 this is accomplished by a polygon on
the X and Y parameters. (For higher dimensional
training sets this might be accomplished by an N-di-
mensional clustering algorithm with different clusters




360 BIGOS ET AL.

X: 191
. T Y: 269 X 275
b | /

A B

F16. 3. Exampie of k-d tree construction. The first three steps of the
construction of the k-d tree used to classify the data displayed in
Figure 2 are shown here. A: The resuiting rectangies from the tree
fragment in B. The Y parameter has the greatest difference between
largest and smailest values so the root, which corresponds to the en-
tire two-dimensional data space in this exampie, is split on the me-
dian of all Y-values at channel 468 (out of 1,024), resuiting in two
rectangles at level 2. Each of these rectangles are split on the param-

being sorted in different directions, or by any dimen-
sion reduction scheme, such as defining sort regions on
the first two principal componentes of the training set.)
The leaf containing that point is assigned the same sort
decision. If two leaves which are children of the same
parent have the same sort decision, they may be re-
placed by their parent. This is called “pruning the
tree.” Figure 4B shows the leaves associated with the
pruned tree defined by the single polygonal gate in
Figure 4A.

Note that the number of branch points in an un-
pruned k-d tree is approximately 3 ** 2! —~ n (n as
above). Each of these branch values requires the com-
putation of a median on one parameter of a subset of
the training set. For a 50,000 cell 6 parameter training
set this results in about 65,000 median computations.
To accomplish this efficiently we use an algorithm de-

vised by Hoare (3), a modification of Quicksort, which .

finds the median of a set of K numbers in order K time.
Because this algorithm also partially sorts the data set,
simple bookkeeping allows us to apply this method re-
cursively to our training set to determine all the
branch points rapidly. For a 50,000 cell 6 parameter
training set, a C implementation of Hoare’s algorithm
on a VAXStation 3100 M76 (Digital Equipment Corp.,
Maynard, MA) running at approximately 10 MIPS pro-
duces a tree in less than 30 s.

The time required to prune a tree will vary greatly
depending on both the sort criteria selected and the

- details of the program code implementation. The larger

the percentage of cells that have the same sort decision
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eter with the greatest spread, resulting in a total of four rectangles at
level 3. To obtain the full tree. the splitting occurs recursively until
each rectangie has only one data event in it (see Fig. 2B). C: The
prototype sort code generated from this tree fragment using VAX
Macro-32. It is assumed that the jacketing procedure for this code
placed the data vaiues corresponding to the X-axis in Register 1 and
those corresponding to the Y-axis in Register 2 of the VAX processor.

(and are spatial neighbors), the more the underlying
tree can be pruned. The fine resolution of one cell per
leaf will only be maintained for cells which have neigh-
bors with a different sort decision. This can be seen
clearly in Figure 4B, where small rectangles are re-
quired only along the lower part of the polygon defin-
ing the sort region. Efficient program impiementation
requires that the entire k-d tree and an auxiliary set of
pointers to the leaves be kept in memory. For the
50,000 cell training set and hardware described above,
pruning 45,000 leaves required less than 15 s when ail
the data were memory resident and several minutes if
paging in and out of memory was required.

Generation of Sort Code From the K-D Tree

Sort code is generated from the k-d tree in the fol-
lowing manner. Each branch point in the tree trans-
lates into a COMPARE instruction. Typically one child
of the node will be reached by a BRANCH instruction.
and the other is the default fall-through, but the actual
details of code generation will depend on the processor
instruction set available. Figure 3C illustrates a sam-
ple of how code may be generated from the correspond-
ing k-d tree. For a training set of n data points, the sort
code will have approximately n compare/branches.
However, since the depth of the corresponding tree 1+
approximately LOG,(n), the number of instructions ex-
ecuted to reach a sort decision is small and bounded
For example, a 50,000 point training set will require 4
maximum of 16 compare/branch sequences to reach a




A

F16. 4. Sorting using k-d trees. A:
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e data set from Figure 2 with a sort gate. B: The pruned k-d tree

for making sort decisions using the gate in A. Note that in general the “larger” leaves of a pruned k-d

tree are “closer” to the root. Thus, e:

for certain border regions on the gate, most sort decisions will

be reached after only a few levels in the pruned tree. This figure aiso shows that in areas of high cell

density the resuitant tree faithfully a
approximation is poor. ,
i
decision, even though the total program |is about
100,000 instructions.

The reduction in tree depth from pruning|is highly
dependent upon the relationship between thd training
set and the sort regions. If the sort region encloses or
excludes large numbers of training set events that are
well separated from sort boundaries, then [for those
events the average tree depth will shrink condiderably.
If the maximum tree depth is needed for only A fraction
of the events in the training set, then the abili
time event pileups to overrun the sort proce:
minimized. The maximum tree depth will, in general,
still occur for events that are close to the

high if
parts of the border cut through areas of high event
density in the training set. Tree size will also be affected

4, pruning reduced the average tree depth from 13 to 8
while reducing the total number of leaves from 5,000 to
132. However, around the lower border of the sprt region
there are some areas where the full depth of the tree is
required. Since each level compiles to two executable
machine instructions in our prototype, pruning saves
for this training set an average of about 10 us per sort
decision on a 1 MIPS sort processor. On a faster pro-
cessor, the sort speed increase from pruning will prob-
ably be negligible. Note, however, that the umber of

tes the specified gate, while in areas of low cell density the

assembly language instructions for implementing the
tree reduces from over 10,000 to a few hundred. This
decrease in size can be very beneficial if the sort pro-
cessor has an instruction cache, because smaller code is
more likely to fit entirely in the cache.

Finally, note that the code representing the k-d tree
must be jacketed with code that polls and reads data
from the cell sorter, loads the data values into regis-
ters, and returns the sort decision to the cell sorter.
Using standard microprocessor buses and parallel dig-
ital /O boards, these functions can be more of a

throughput bottleneck than the sort decision calcula-
tion.

IMPLEMENTATION OF PATTERN SORTING

The prototype computer hardware for our implemen-
tation of pattern sorting is shown in Figure 5. An
rtVAX 3000 and a MicroVAX processor (Digital Equip-
ment Corp.) are configured in a Q-bus box in an arbiter
slave relationship: the details of this have been de-
scribed previously (4). Three parallel digital interfaces
are used for communication between the VAX proces-
sors and the cytometer electronics.

The arbiter processor, called the network server.
handles data I/O, instrument control information. net-
work connectivity, and loads programs into the slave
processor. This makes the cytometer function as if 1t
were a device on the ethernet, offering services (data
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UVax
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Processor

VAX 6310

Q-Bus
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F16. 5. Computer hardware for implementing pattern sorting. This
figure shows the prototype computer system used to implement pat-
tern sorting. The cytomseter electronics, a custom-built eight param-
eter flow instrument, is connected to a dual processor computer using
three parailel interfaces. The Control/Data processor, an rt VAX 3000,
runs VAXELN. It reads data from the cytometer over a DRV11-WA
interface (Digital Equipment Corp.) and sends it out to requesting
clients over ethernet via an on-board connector. It receives cytometer
control messages from clients and loads them into the cytometer elec-

streams) and accepting commands (cytometer control
changes and new sort programs). The server code is
written in DEC C and runs under the VAXELN real-
time operating system (Digital Equipment Corp.).

In our system we have a data storage client running
on a VAX 6310 and several user clients running on a
VAXStation 3100 (Digital Equipment Corp.). They in-
clude dot plots, an autocalibrator, the cytometer control
panei, the data collection manager, and the sort code
generator. The data collection manager, which is part of
our FACS/Desk software (7), starts and stops the data
storage client and insures that proper sample annota-
tion information is stored with the data. The dot plots
display, in real time, any pair of user-selected param-
eters for instrument and cell sampie monitoring. The
control panel allows the various instrument parameters
such as amplifiers, sort gates, etc., to be set. The sort
code generator combines user gating information along
with a training set of data it receives from the server to
produce a compiled sort tree as described above. This
computer program is then sent over the net to the server
which loads and starts the slave processor. The slave
processor then reads and runs cell data through this tree
(or a defauit program which produces a “NOSORT” for
each event without processing it through any sort tree)
and returns sort decisions to the cytometer.

Figure 6 shows the timing in this implementation for
an 8 parameter sort with an average tree depth of 16.

V Data Management, batch
computing, and printing

tronics through a KSC 2920 CAMAC interface (Kinetics Systems
Corp., Lockport, IL). Lastly, it also receives sort programs and loads
them into the sort processor. The sort processor, a microVAX II, runs
the current sort tree program. It reads data from the cytometer over
a DRV11J interface (Digital Equipment Corp.), processes the data to
make a sort decision, and returns it over the same interface. When
sorting is not desired, a default program is run which returns a
“NOSORT" for each event without processing it through any sort tree.

The speeds shown are not inherent in the pattern sort-
ing algorithm but reflect very closely the hardware we
implemented this prototype on. The MicroVax slave
processor barely runs at 1 MIPS; a modern RISC or
CISC processor couid easily reduce the sort decision
calculation time from 40 to 1 us or less. Indeed, with
careful software and hardware engineering we believe
this prototype system can be impiemented so that both

the network server and sort code run on a singie pro-
cessor.

CONCLUSIONS

Pattern sorting is a generalized method for computer-
generated N-dimensional cell classifications in reai
time. A multidimensional binary tree is constructed
from a training data set to which sort decisions have
been assigned to each cell. The tree is then compiled into
machine instructions which are loaded into a dedicated
microprocessor for subsequent execution.

The principal advantage of pattern sorting over con-
ventional bit-mapped lookup techniques is flexibility.
Conventional techniques limit sort regions to projec-
tions upon planes defined by the data parameter axes.
e.g., forward by side scatter and fluorescein by phyco-
erythrin. These regions are then combined to form hv-
percubes in the N-dimensional data space. For manv
applications this will be adequate because the presort
analysis breaks down easily into these two-dimen-
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Trace A: 1st Laser Threshold

Trace B: Data Reads

Trace C: Sort Decision

0 40 80 120 160
Microseconds

FiG. 6. Sort m timing. This figure shows the oecilloscope
traces monitoring the data and sort decision signais of the siave pro-
cessor (microVAX) as it runs code generated from a k-d tree of depth
16. They were obtained using a TDS 420 Digitizing Oscilloscope (Tek-
tronix, Inc., Beaverton, OR). Sort gates were chosen so that the full
depth of the tree was always traversed. Trace A shows the peak tim-
ing for the first laser; it is also the trigger signal for the oscilloscope.
Approximately 600 ps after this timing signal the cell will be at the
drop break-off point. Trace B shows the eight data reads by the sort
processor through the DRV11-J interface (see Fig. 5). They occur ap-
proximately 40 us after the timing signal for two major reasons. First,
this cytometer has three lasers; the third laser peak detect is approx-
imately 13 us after the first. Second, there is a delay in the sort
processor polling of the DRV11-J card to avoid contention on the bus
shared with the network servér. Trace C shows that the sort decision
is returned approximately 60 us after the data read is finished, con-
sistent with the known processor speed of the microVAX. The total
time for event processing is 140 us well within the 600 us required for
a sort decision (see text). Moreover, the sort decision processing time
(data reads, decision caiculation, and return) is 100 ps, consistent

" with an overalil sort rate of 10,000 events per second.

sional descriptions. However, as more parameters are
added to flow cytometers and analysis methods such as
N-dimensional clustering or principal component pro-
Jections are used, defined sort regions may not be ac-
curately characterized by regions in planes defined by
the data axes. Pattern sorting, however, will provide
very good approximations to these regions and will al-
low reai-time sorting to be based upon them.
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