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Collection, Display, and Analysis of Flow Cytometry Data

Davip R. PArRks AND MARTIN Bigos

Objectives of data collection and analysis

The biological objectives of FACS experiments are now ex-
tremely varied, but there are common features that we emphasize
here. When collecting flow cytometry data, the objectives are to

ensure that annotations and documentation are adequate to make . .

the data interpretable in the long term. It is also critical to ensure
that the measurements are correct and that enough cells have
been recorded to support the analyses to be done.

In the data analysis process, we are usually interested in
identification and/or enumeration of cell populations on interest,
characterization of these populations in terms of one or a few
numerical values, and production of clear visual representations
of data results too complex to be conveyed in a few numerical
values. Another objective, which we do not deal with in this
chapter, is extraction of parameters to fit mathematical models for
biological processes.

Before collecting data

Three critically important steps affecting the success of flow
cytometry data analysis should be done before any data are
collected. These are inclusion of appropriate and informative
controls, documentation of the experiment and cell samples, and
standardization of the flow cytometer.

Control samples

Biological experiment design and sample preparation are dis-
cussed elsewhere in this volume (particularly in Chapter 49 [1)).
Here we simply emphasize the importance of carefully selected
control samples. There are two general types of controls to be
considered: biological controls to verify reagent staining patterns
or specificity and reagent controls that are needed to set fluores-
cence compensation values. Including processed but totally un-
stained cells is an often overlooked but sometimes critical biolog-
ical control that can be valuable in understanding background
staining of fluorescent reagents. Single-color stains for adjusting
or confirming fluorescence compensation should use the brightest
stain in each color to achieve the best accuracy.

Documentation and annotation

The designers of most flow data systems have viewed documen-
tation as a poor stepchild to the glamor of graphical display.
Often, all they provide is a pedestrian editor for keyword values to
be stored with the data file. When later analyzed, these keywords,
such as date run, reagents used, and so on, are usually displayed
with the data. Unfortunately, these editors tend to be oriented
toward single samples and not taking sample grouping and
experiment structure into account. Once the annotations are
entered, there may be no facility for browsing or searching the
keywords to group or retrieve relevant files when doing later
analysis. Moreover, most flow facilities rely on the underlying

structure of the computer file system to manage the data itself.
The organization of data files into experiments and projects is not
ensured in this arrangement. These management issues are
problems related not only to flow cytometry. Other disciplines in
which large amounts of instrument data are generated are expe-
riencing similar problems [2].

As an experimenter and experiment designer, it is worth
considering these issues before any work is done. If a very limited
number of flow cytometry experiments with a relatively small
number of samples are performed, then the documentation
provided by a good laboratory notebook will probably suffice.
However, if the use of flow cytometry will extend through many
experiments and samples, setting up a secondary database on a
personal computer to track this information, and keeping that
database curfent, is a worthwhile endeavor to avoid many future
headaches.

Instrument standardization

Instrument standardization should guarantee that if “identical”
samples were run at different times, the measurements would be
the same. The first step in carrying this out is to establish a set of
standard operating conditions and measurement expectations.
The optical conditions of the instrument should be optimized
using high uniformity test particles, and signal levels should be
adjusted, running typical cell samples and using amplifier gains
and PMT voltages, to set good levels for measurements on cells.

‘Measurement values for the test particles can then be recorded

under these conditions to establish signal level and uniformity
(CV) targets to be reproduced in future instrument standardiza-
tions. (We have found that multi-dye polystyrene microspheres,
such as those obtainable from Spherotech, Inc., Libertyville, IL,
USA, work well for this purpose, and with the right dyes, a single
lot can be used with UV, 488 nm, and dye laser excitations. Types
of standard particles are discussed in Chapter 47 31

At later times, the instrument conditions, such as laser powers,
are reproduced as well as possible, and samples of the standard
microspheres are used for alignment optimization and target
signal level matching (by PMT voltage adjustment, etc.). Compar-
ing the CVs obtained in this way with the previously measured
values and comparing the PMT voltages required to match the
target signal levels with those of the initial run gives us a diagnosis
of how well the running conditions have been matched. We found
it useful to run the standard microspheres and standardize the
signals before each FACS experiment and to recheck the stan-
dardization when any problems occur during an experiment. It is
also important to record the standardization values (PMT volt-
ages, CVs, ‘etc.) for each run to track trends and help in the
investigation of unexpected results.

If standard conditions are re-established accurately enough,
fluorescence compensation settings for particular dyes should
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have the same value from day to day [4]. However, if possible,
fluorescence compensations should be checked with a single
stained sample for each dye.

The signal scales in the standard conditions can be calibrated in
relation to numbers of dye molecules or numbers of dye coupled
antibody molecules using microspheres that carry a known
amount of dye or that bind a known number of antibody mole-
cules (discussed in Chapter 47 and available, for example from
Flow Cytometry Standards Corp., San Juan, Puerto Rico). An-
other form of signal calibration, providing a measure of the
relation between photoelectrons generated in the PMT and
output signai levels, is discussed below under “Absolute signal
levels—photoelectron estimation”.

Data collection
Format, resolution, and range of data

An emerging standard for data storage and interchange is the
FCS format [5]. Files written to this standard should be readable
by any program that supports FCS (almost all commercial analysis
programs make this claim); however, at this time, full intercom-
patibility has not been realized. As an alternative, many programs
will allow the export of binary list data as a text list, which can then
be imported into almost any third-party spreadsheet or analysis
program for computations not available in the program of origin.

The simplest and generally most useful way to store FACS data
are as data lists. In this form, the measurement values for each of
the cell-related data events are recorded in order so that the data
collection may be processed repeatedly in a variety of different
ways to optimize data gating and to obtain different graphical and
numerical representations of the sample. Well-documented list
data can often be reanalyzed long after the original experiment to
test new ideas or interpretations. Most software also allows data
storage in one- or two-dimensional histograms. When computer
storage was expensive and data were usually limited to two or
three measurements per cell, this was a necessary and adequate
alternative, but currently there is little reason to record anything
short of list data.

For most measurements in flow cytometry, analog voltage levels
representing the measurements of interest are processed with
analog-to-digital converters (ADCs) to obtain digital values that
can be conveniently processed and stored. The maximum value a
of a binary integer is determined by the number of bits allocated
to it. For the digitization process, the maximum size integer (in
bits) is referred to as the resolution of the data. The number of
signal levels is 2" where n is the bit resolution, so that 8-bit data
have levels ranging from 0 to 255, whereas 10-bit data range from
0 to 1023. The ADCs used in flow cytometry currently produce
data with a resolution of 8 to 16 bits.

It is common to use a 12- or 16-bit ADC but to record only 8-
or 10-bit data from it. This is because the types of ADCs
commonly used, although accurate in terms of signal level evalu-
ation, have variation in the “widths” of the successive digitized
levels (i.e., the range of analog signal levels recorded as a
particular digital value is not constant). This results in ragged-
looking histograms when the raw data are plotted at full resolu-
tion. Ignoring several of the finest bit levels smoothes out such
displays.

Calculations and displays of data are sometimes not done at the
full data storage resolution. For example, many two-dimension

displays (see below) are computed at 6-bit (64 X 64 levels) or 7-bjt
(128 X 128 levels) resolution for computational efficiency evep
though the underlying data are stored at higher resolution,
However, for statistical parameters calculated from the data, it is
almost always appropriate to use the full resolution. When stored
data are likely to be used in producing computed dimensions (see
“Data transformations” below), it may be useful to record at
higher bit resolution than is really needed for direct use of the
primary data.

During data collection

We found that the two most important tasks during data
collection are monitoring of the data to verify its integrity and
ensuring that the documentation and annotation of the sample/
experiment information is complete and correct. We do not
recommend that extensive analysis of the data be carried out
during data collection for the following reasons. First, many flow
instruments are time-shared, and doing a full data analysis during
collection prevents others from using the instrument. Second, with
most instruments and experiments, there are enough aspects to
monitor that doing serious analysis may shift the focus of the
experimenter enough to miss key events. Of course, when physi-
cally sorting out cells, analysis is necessary to delineate the desired
population(s). However, in most sorting experiments, there are a
limited number of samples, and preliminary work requiring
detailed analysis, such as reagent titration and evaluation of
controls (see Chapter 49 [1]) should already have been done. One
of the advantages of routinely storing full-list data is that the
experimenter is free to focus on the data integrity during data
coliection, knowing that various analysis options are available
later.

Monitoring of data during collection involves visualization of
the data on displays that are updated in real time (as the sample
is run). The most common and useful display is called a dot plot,
in which two (user selected) parameters form the x and y axes of
a two-dimensional display (as in Fig. 50.2D). Dot plots give useful
information about the distribution pattern of the data and are
quick to compute. Dot plots are not ideal for final data display but
are usually quite adequate for monitoring data patterns to ensure
that the right sample is being run, that the results are qualitatively
as expected for the sample and reagents, and in, longer runs, that
the pattern does not change over time. Forward scatter is a very
useful parameter to detect instrument changes, partly because it is
used as a linear signal (as opposed to log signal; see below). A
small change in the instrument conditions will generally result in
a more recognizable difference in the forward scatter distribution
than in the distributions of log fluorescences.

Gating of data during collection—how many cells to collect

Although we generally recommend collecting ail events from a
sample in list format for later analysis, from the monitoring
displays one can usually see events that will not be relevant to any
analysis. These usually involve cellular debris, dead cells, or
perhaps platelets if one is running diluted blood. When these are
a small fraction of the total events, they may as well be recorded
and excluded in later analysis. Then, if there is any question about
the results, the whole set of measurements is available for
re-examination. Sometimes, however, well-defined undesired
events occur at a higher frequency than all possibly desirable
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Table 50.1. Minimum cell sample sizes (in thousands) needed to reveal
significant differences in population frequencies

Frequency difference to be detected as significant

Measured

frequency 3% 1% 0.3% 0.1% 0.03% 0.01%
90% 1 7 78 700 7700
70% 2 17 180 1600 -
50% 2 20 216 1950
30% 2 7 180 1600
10% 1 7 78 700 7700
3% 25 26 230 2500
1% 1 9 78 860 7600
0.3% 3 25 260 2300
0.1% 9 90 790

Note that the required sample sizes for a frequency F greater than 50%
are the same as for a frequency 100%-F because this change represents
only a reversed designation of which events are in and out of the
population of interest.

events. Most instruments (or the data collection systems associ-
ated with them) allow one to exclude certain data regions from the
data collection file. This exclusion before storage is also useful for
analyzing very-low-frequency subpopulations in samples where
most of the events are uninteresting.

It is useful to estimate how many events are needed to provide
a desired level of statistical accuracy in population estimates.
Although in many cases the statistical variations will not be the
dominate source on uncertainty in evaluating the experiment, this
at least makes it possible to ensure that enough data are taken to
support the intended analysis. Table 50.1 gives ceil counts needed
for measuring population frequencies with varying degrees of
certainty and illustrates the usefulness of gating out debris. For
example, measuring a 10% population with 1% certainty requires
only 7000 events, but, if 90% of the sample is debris, then 70,000
ungated events are needed.

Data transformations

Many types of transformations have been used for FACS data,
but the common ones we mention here are linear/logarithmic,
fluorescence compensation, and ratios.

The choice of logarithmic or linear data

Logarithmic signal amplification is widely used for immunofiu-
orescence measurements as a way to evaluate and visualize signals
over a wide range, typically about four decades. Digitization of the
logarithmic amplifier output results in an approximately logarith-
mic data distribution. Depending on the cell populations involved
and the purpose of the analysis, logarithmic or linear presentation
of the data may be more appropriate. Linear is preferred for data
with limited dynamic range or narrow peaks (both frequently
encountered, for example, in cellular DNA measurements). Log-
arithmic presentation retains the relative shape of distributions
regardless of signal level, making it easy to compare distributions
in which the shape is more important than their absolute signal
levels. Thus, in a logarithmic display, a population whose signals
vary over a sixfold range will be broader than one with only a
threefold range, regardless of which is stained more brightly. In a
linear display, the width of a population in the display is propor-
tional to the brightness of its staining (as well as to its intrinsic
variation). In a logarithmic presentation, each successive digital
level corresponds to a constant fractional increase in original

signal level (about 4% per level in 8-bit data and 1% in 10-bit
data). In linear presentation, of course, each successive level
represents a constant added signal increment over the previous
one.

In multicolor immunofluorescence, it is often easier to identify,
delineate, and visually estimate frequencies of subpopulations of
cells in one- or two-dimension displays using log rather than linear
presentation (Fig. 50.1). Another problem with linear presenta-
tion is that when a cell population is centered near midscale,
higher level signals within the population will often go offscale.
(Offscale events are shown as a smail peak at the right end of the
upper right panel in Fig. 50.1.) The offscale events are counted,
but their true values are unknown, and a mean or coefficient of
variation calculated for the population will be biased. In logarith-
mic presentation, it is usually easier to keep all the relevant signals
on scale. Log presentation may also give more easily interpreted
orthogonal light scatter distributions even though the dynamic
range of the signals does not require four decades. In this case, we
found that a two-decade log display may be optimal.

Fluorescence compensation

Analog fluorescence compensation is discussed in Chapter 47.
Off-line linear transformation equivalent to fluorescence compen-
sation can be useful, usually in situations where stored fluores-
cence data are uncompensated or undercompensated. In multiple
laser systems, a dye may be excited by more than one laser,
leading to unwanted signal contributions that cannot be corrected
by ordinary analog fluorescence compensation. For example,
there are problems in using PE-CY5 with 488 nm excitation in the
same system with allophycocyanin excited at 600 nm. The CY5 in
PE-CYS5 is excited directly by a dye laser at 600 nm, the allophy-
cocyanin excites a little bit at 488 nm, and both dyes emit in the
660- to 670-nm range. The two separately timed signals from the
two laser transits will each be the sum of contributions from both
dyes. Analysis of data from singly stained cells of each type
provides the subtraction coefficients that can be used to correct
the mixed dye results.

Ratios

Ratios are synthetic measurements derived from two primary
signals. Ratios are particularly useful in analyzing measurements
with metachromatic dyes. These dyes generally measure physio-
logical properties of cells by having emission spectra that change
with varying physiological conditions. Thus, the fluorescence
emission is measured in two different wavelength regions, and the
desired parameter for data analysis is the ratio of these signals. A
common application is the use of Indo-1 to measure intracellular
free [Ca®*] [6].

The ratio can be computed either in the instrument hardware or
in software. The advantage of the hardware approach is that the
full functionality of the instrument is available for the ratio signal,
that is, real time monitoring and sorting, as well as data collection.
Depending on the system used, software ratioing may not offer all
of these capabilities. Analog electronic ratios, however, generally
cannot provide the ratio as an accurate on-scale output over the
full range of primary signals. Software ratios also have problems
maintaining the synthesized parameter on-scale. We have pro-
posed and demonstrated a solution by using the difference of the
logs of the primary signals as a measure of the log of the ratio [7].
Our solution was done in hardware, but it could also be done by
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Fig. 50.1. Comparison of logarithmic and linear data display. A single sample of human blood mononuclear cells was stained for CD3 and CD4, fixed
with paraformaldehyde, and analyzed using logarithmic (left) and linear amplification (right). Light scatter gating was used to exclude ail events other
than lymphocytes and monocytes. The cell population centered at about 9 units CD3 and 18 units CD4 consists of monocytes; the other populations
are lymphocytes. The background fluorescence levels (CD3-,CD4- appearing at about 2 units and 1 unit, respectively, in'the lower teft log-log panel)
are elevated due to the fixation process. The single dimension displays are gated CD3 distributions for cells in the CD4 range marked on the
two-dimension plots. The marker lines in both CD3 and CD4 are drawn at equivalent signal levels in the logarithmic and linear displays.

analysis software. We found that this approach overcame the
limitations described above.

Data display and analysis
Gating and multidimensional data analysis

The term *“gating” is commonly used for the process of seg-
menting cell data events into subpopulations for subsequent
display or numerical evaluation. This frequently involves exclusion
of undesired debris, dead cells, and/or aggregates followed by
delineation of populations of interest among the remaining
events. Gating regions are typically defined as intervals on one-
dimension displays and as rectangles, polygons, or other regions
on two-dimension displays. Compared with single-dimension dis-
plays, two-dimension display methods often provide clearer indi-
cations of optimal demarcation between populations even when
only a single fluorescent label is measured (such as using a
forward light scatter versus fluorescence contour plot for selecting
high and low fluorescence populations rather than just a fluores-
cence histogram). Analysis strategies for multicolor immunologi-
cal data are presented in Chapter 49.

Density estimation

In flow cytometry, we use measurements on a limited number of
cells to estimate the properties of the full population. Statistical
fluctuation in the number of cells allocated to each digital bin
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(channel) limits the ability of raw data histograms to represent the
true population distributions. Appropriate density estimation
functions can give better estimates of the true distributions and
make it easier to see real features in the data that might otherwise
be obscured by the statistical noise. In addition, the smoothing
provided by a density estimation function is often useful when
several one-dimension curves are overlaid, and it is practically
necessary for producing easily interpreted contour plots from

" moderate-sized data sets (Fig. 50.2,.B versus F). For light scatter,

immunofluorescence and most other measurements (except high-
resolution DNA content and measurements on very uniform test
particles), we found that a count-dependent kernel method works
very well [8]. This method adjusts smoothing in relation to the
number of data events in each bin so that sharp features are
retained where there are many events per bin but purely statistical
fluctuations are diminished. With any smoothing method, it is
important ensure that real features in measurement are retained. -
In general, sample statistics should be computed on the raw data
even if gating displays have been computed at lower resolution.

Two-dimension displays

Two-dimension displays of flow cytometry data have several
functions, and each display method is better adapted to some
functions than others. In this section, we describe and, in some
cases, illustrate these methods. The functions include quickly
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Fig. 50.2. Comparison of different contour and dotplot methods. A single data set is represented in six types of plots. The sample consists of human
peripheral blood lymphocytes (light scatter gated) stained for CD8 (Leu-2a-Texas Red) and CD4 (Leu-3-Phycoerythrin). Five identifiable
subpopulations with frequencies of 46%, 23%, 22%, 1.9%, and 0.4% are marked on the plots. Except for the raw data plot in F, the contour plots are
computed on density estimated surfaces at 128 X 128 resolution. To obtain even marginally acceptable contours, it was necessary to compute the raw
data plot (F) at 64 X 64 resolution. For probability contours with outlier dots (E), the 5% of data events falling outside the lowest contour are plotted

as individual points.

computed displays for interactive analysis, displays used for
“gating” data and defining subpopulations, and displays used for
presentation/publication of results. Further discussion and illus-
trations can be found in Chapter 49 by Kantor and Roederer [1].

Dot displays (see Fig. 50.2D), in which each cell is represented
by a dot at the appropriate coordinates for its measurements in
the displayed dimensions, are quickly produced and easy to
interpret, but they suffer from limited dynamic range. The number
of dots in any region of the plot represents the frequency of cells
with the corresponding characteristics. Low-frequency popula-

tions will not be visible if too few events are plotted; high-
frequency populations lose visible structure if too many events are
plotted, and plots of the same cell sample using different numbers
of events will look different. However, because they can be rapidly
computed at the full data resolution, dot displays are ideal for
real-time monitoring (described above) and for some types of
interactive analysis.

Color dot displays offer the possibility of overlaying two-
dimension data distributions by representing each population in a
different color. No other normal two-dimension displays lend
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Fig. 50.3. Estimating positive and negative cell frequencies in overlapping
distributions. Peritoneal cells from a CBA/Ca mouse were stained for IgM
(fluorescein) and IgD (Texas Red). Total IgM staining distribution is
shown for light scatter gated live cells and separate IgD+ and IgD~
components overlaid onto the total. Because the cell types represented in
this sample are either I[gM+ IgD+ or [gM— IgD~, the IgD+ and IgD—
components can be used to identify the true IgM+ and IgM— cell
populations even though their measurements in the fluorescein dimension
are overlapping. If the total distribution is divided between “positive” and
“negative” at the indicated line, the classification errors of the true IgM
positive and negative cells balance and the measured frequencies of the
populations equal the true frequencies.

themselves to overlays. Linked color dot plots displaying different
pairs of data dimensions from a single sample (as implemented,
for example, by Paint-A-Gate, Becton Dickinson, San Jose, CA)
can be very useful in exploratory analysis of multiparameter data.
When a gating region is defined on one of the displays, the data
events in that region are marked with a particular color in all of
the displays, making it easy to trace the population characteristics
in different views. Moreover, by choosing the “painting” colors
carefully, color combining rules can easily show populations that
satisfy more than one gate.

Contour plots require more computation, but they can maintain
details over a wide dynamic range and can be normalized to adjust
for different numbers of cells-in the set of data being plotted. This
is important when comparable displays are needed for cell
populations that have different numbers of events in different cell
samples. The usefulness of contour plots depends a great deal on
the methods used to derive the surface on which the contours are
drawn and on the method used to specify the contour levels. The
surface must be smooth enough to avoid having the contours
strongly affected by local statistical fluctuations in the recorded
events, but it should also preserve statistically significant sharp
features. As mentioned above, variable kernel methods have been
developed that are generally quite successful in meeting these
conditions [8].

Methods for defining contour levels include uniform steps,
logarithmic, and probability levels. These are illustrated in Figure
50.2. Uniform density steps are comparable with the uniformly
spaced elevation lines of topographic maps (see Fig. 50.2A). They
are the easiest to conceptualize, but, we found, the least informa-
tive. Logarithmic contouring starts at a level equal to the highest

channel value and then successively decreases by a fixed ratio until
the level is at the height of one cell (see Fig. 50.2C). This results
in easy visualization of very-low-frequency populations while
maintaining a valid representation of large populations. Probabil-
ity contour levels are chosen so that an equal number of cells falls
in the zone between each pair of contour levels [8]. We found that
a single default form with probability contours at 5% spacing
usually provides good views of immunological data without any
user adjustments (see Fig. 50.2B). A useful hybrid to aid in
visualization of low-frequency subpopulations while using proba-
bility contour levels can be obtained by showing dots for all of the
data events outside the lowest contour (see Fig. 50.2E).

Grayscale and color-shaded two-dimension histograms are in-
termediate between dot displays and contour plots in terms of
computation requirements. Like dot plots, these displays rely on
visual integration for density estimation. We have not used these
methods sufficiently to compare their ability to visualize data with
that of the methods described above, but we have seen choices of
gradients and color shading that produce markedly inferior dis-
plays.

Another type of display closely related to two-dimensional
displays is one where a third dimension is added that represents
the “channel counts” in the primary two dimensions. These plots
are visualized with colors or as “fishnet” models and are useful
primarily as final displays to convey an overall impression of the
cell populations. They are not readily used for defining gating
regions.

Researchers have been working with other methodologies of
analyzing and displaying more than two parameters at once, such
as principal components [9], but none have come into widespread
use yet.

One-dimensional displays

The simple one-dimensional histogram, plotting cell frequency
as a function of signal level, has been a venerable analysis tool
since the beginnings of flow cytometry. It is still used extensively
in DNA analysis {9] and in situations where data can be reduced
by either gating or synthesizing to one critical dimension to view
a population or several populations of interest. Compared with
any of the two-dimension display forms, one-dimension histor-
grams provide easier visual estimation of population frequencies
because the area under a region of the curve corresponds to the
integrated cell frequency. One of the most useful features on
one-dimension displays, as is illustrated in Figure 50.3, is that
several may be overlaid on a single set of axes to compare different
samples or different popuiations within a sample. This works well
also for sample series analysis as in monitoring antibody titration
experiments. In general, density estimation procedures are useful
in reducing the effects of statistical fluctuations in one parameter
displays, and the smoother density estimated curves produce more
readable overlays than when raw data histograms are used.

Sample and subsample statistics

The purpose of deriving statistics from flow cytometry data are
to reduce the multidimensional data distribution to one or a few
salient features that can be used for evaluation and comparison of
results between data sets. The commonly used statistics include
population and subpopulation frequencies (including quadrant
statistics), measures of central tendency or typical signal levels for
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Fig. 50.4. Robustness of estimators: median and “robust CV” versus mean and CV. Hlustration of how order statistics (based on percentiles) are less
sensitive to data gating selection than moment statistics. (A) Histogram of the forward light scatter distribution for a microsphere sample. The regions
indicated are * channels from the main population peak position. The “reasonable” gating range covers the range of selections that one would normally
expect if different individuals selected gates. (B) Comparison of the mean with the median for the different gating ranges shown in A. (C) Comparison
of the CV of events in the gating ranges with the “robust CV”, as defined in the text. The median and robust CV are essentially constant over the
“reasonable” gating range and gatings outside the “reasonable” range have less effect on the median and robust CV than on the mean and ordinary

CV.

the population (median, mean, mode), and measures of popula-
tion uniformity (coefficient of variation {CV] and robust CV;
defined in Uniformity/variation within a population, below). Higher
moments of distributions such as skewdness and kurtosis can be
computed, but in flow cytometry, graphical displays of the data are
usually preferred for conveying the more complex aspects of data
distributions.

Robustness and order-based versus moment-based statistics

Important considerations in deciding what statistics to use are
their appropriateness to the task at hand and their robustness. For
example, an appropriate measure of staining intensity of a fluo-
rescent antibody would be the mean of the linear data if one were

- comparing flow results to a buik assay. However, in other situa-

tions, the median is often a better value to report for central

tendency (Fig. 50.4). Robustness, in this sense, means that the
analysis results should not be too sensitive to limitations in the
data or deviations from the assumptions of the analysis. This is
relevant when statistics are to be extracted from gated popula-
tions, because, in most cases, gating is done visually by the
experimenter, leading to variations in the selection of the data
values included in the final analysis. A statistic that is very
sensitive to changes in the gates has to be used with special care
to produce consistent results.

When the population of interest is clearly separated from
others by one or a combination of the flow cytometry measure-
ments, the accuracy of the evaluation is limited only by random
counting variation in the distribution of recorded events. This
variation can be minimized, as mentioned above, by collecting
data from a sufficient number of relevant cells (see Table 50.1).
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However, even with well-separated populations, there may be
ambiguous events due to debris, dead or dying cells, doublets, and
so on. If you investigated the distribution of fly wing lengths by
measuring the wings of 400 flies, you would know that each data
value corresponds to a fly wing length. In this case, the common
moment-based statistics (mean, variance, etc.) are valid for char-
acterizing the distribution. In flow cytometry, however, the first
problem is to decide which data events properly should be
included in the population of interest. The questionable events
will usually have measurement values on the margins of the main
population. In this circumstance, it is preferable to rely on
statistical measures that emphasize the central parts of the
distribution and are not greatly affected by inclusion or exclusion
of a few events on the periphery. In particular, as illustrated in
Figure 50.4, order statistics {median, robust CV, etc.) tend to be
less affected than moments (mean, CV, etc.).

Subpopulation frequencies

When positive staining and negative cell populations are not
well resolved, there are several ways to estimate the actual
fraction of positive cells. In a mixed positive/negative sample, any
cutoff chosen to define positive cells will underestimate the actual
positive population when the frequency of negative control cells
above the cutoff has been subtracted. A more balanced approach
is described below. In cases where test and control staining
patterns overlap but the biology and/or staining pattern indicate
signal levels for all test cells have been elevated from their control
levels, it is not appropriate to evaluate a fraction of positive cells.
Evaluating the mean or median signal levels for the test and
control populations is more reasonable.

Quadrant statistics, frequencies in the four regions obtained by
dividing a two-dimension display with a vertical and a horizontal
line, are sometimes used as a quick way to evaluate two-color
staining. This approach often does not provide optimal delinea-
tion of all the cell populations in the sample. The appropriate
separation level in one dimension may be different for subpopu-
lations that are high or low in the other dimension, especially if
significant fluorescence compensation is required. In addition, the
quadrants often contain peripheral events that are not part of any
of the primary cell populations.

Population signal levels

Depending on the purpose, several different statistics, including
arithmetic mean, geometric mean, median, and mode, may be
computed to express the signal level for a cell population. The
arithmetic mean (or simply “mean”) is needed for comparison of
FACS staining levels with corresponding bulk cell assays. In
practice, the accuracy of evaluating means is often limited by their
sensitivity to small numbers of events with signal levels far from
the center of the population. Thus, reasonable differences in
gating choices may have a significant effect on the mean, and a
significant fraction of offscale events will bias the mean to an
unknown extent.

Direct calculation of the mean on logarithmic data leads to
what is effectively a geometric mean. For populaions where log
presentation is appropriate, this may be a better representation of
the signal level of typical cells than the arithmetic mean.

For many purposes, the median is the best choice to represent
and compare typical signal levels of cell populations. It automat-
ically falls at corresponding points in log or linear presentation. It
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is also robust in that including a few false signals in the calculation
or excluding a few outlying events that are really part of the
population of interest has minimal effect. The difference between
the median and the mean in this respect is illustrated in Figure
50.4. As long as offscale events in the population are fewer than
50%, the median will be completely unaffected.

The mode of a distribution is simply the most common signal
value (the “peak” of the distribution). It is not particularly useful
because it can be affected by statistical fluctuations in the data bins
and it depends strongly one how the data are expressed in that the
modes of linear and log presentations of the same data can be
quite different.

Uniformity/variation within a population

In flow cytometry, signal uniformity statistics are most com-
monly used to evaluate measurements on test particles or to
express the uniformity of DNA measurements. Because the sp of
a population is proportional to its overall signal level, it is
common to express relative variation in signal levels in a popula-
tion by normalizing to the mean, yielding what is conventionally
called the coefficient of variation or CV (=(sp)/{(mean)). The CV
is another moment-based statistic like the mean, and its value is
even more sensitive to the inclusion or exclusion of a few outlier
events and to the loss of information represented by offscale
events. Therefore, care should be taken to optimize data gating so
that all events that are really part of the population of interest are

included and extraneous events are excluded.

For most purposes, and particularly for evaluations and com-
parisons of standard microspheres, we found the “robust CV”
(RCV) [10} to be a useful and reliable substitute for the standard
CV. For a normal distribution, the 25th and the 75th percentile
are 0.68 sps from the median. (The 25th and 75th percentiles are
particularly easy to compute because they are just the medians of
the subpopulations above and below the population median.) In
that case, the interquartile range, the difference in signal level
between the 25th and 75th percentiles, divided by the median will
be 1.36 times the CV, leading to the definition

RCV = (interquartile range)/(1.36 X median).

Figure 50.4 shows a comparison of standard CV and robust CV
over a range of data gating choices, illustrating how the robust CV
is much more stable. We found the robust CV to be a good
monitor for cell sorter alignment using standard microspheres and
an automated instrument standardization program. The auto-
mated peak-finding algorithm does not have to be extremely
accurate in delineating the main microsphere population because
we rely on medians and robust CVs in the evaluation process.

Special analysis methods
Evaluation of overlapping populations in one dimension

. When there are overlapping populations, any choice of demar-
cation line will result in misclassification of some events. However,
if a separator between two populations can be chosen that gives
equal numbers of misclassified events in each direction, the
population frequency estimates will be correct. Figure 50.3 shows
an overlapping distribution of IgM+ and IgM- cells in an example
where we have other data to identify the true IgM+ and IgM-
populations. The dividing line marked on the plot gives correct
“positive” and “negative” frequencies. In this case, the medians of
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Fig. 50.5. Estimating fluorescence sensitivity and signal-to-background. Il-
lustration of a mixture of microspheres with five levels of dye plus a blank
population with no added dye (Rainbow Fluorescent Particles, RCP-30-5
from Spherotech, Inc., Libertyville, IL). Light scatter gating has been used
to accept only single particles of the main microsphere population. Taking
the blank microspheres to represent the background signal level for this
type of measurement, we evaluate the median and 86th percentile of the
blank event group, obtaining values of 0.2041 and 0.2920 units, respec-
tively. Twice the difference between these values is 0.176 fluorescence
units, which we take as the background variation measure (or sensitivity
unit). The least fluorescent of the dye labeled groups has median
fluorescence of 11.92 units, which gives a net signal about 67 times the
background level.

the positive and negative parts of the total distributions are both
within 1/2% of the true values, but calculations of mean signal
levels will be biased to a greater extent. This is another case in
which more robust estimators like the median give more stable
results. Of course, in the normal situation for estimating frequen-
cies from an overlapping distribution, we do not have another
marker to separate the positive and negative groups, but any
controls or extrapolations that allow us to approximate the
distributions in the overlap zone can be used estimate the division
point that will balance the classification errors and yield correct
frequencies.

Sensitivity and signal-to-background evaluation

Continuing our emphasis on robust statistics, we propose the
following procedure (illustrated in Fig. 50.5) for evaluating mea-
surements in relation the their appropriate background signal
distributions. The method should be useful for comparisons of
measurement sensitivity on different instruments. It is also appro-
priate for signal-to-background evaluations in comparing different
reagents, comparing different conjugations of the same reagent,
or comparing different concentrations of a single reagent (i.e., in
evaluating reagent titrations). The selection of a truly appropriate
control (blank microspheres, unstained cells, antigen-negative
cells, isotype stained control cells, etc.) is often crucial in obtain-
ing a useful result.

1. Record measurements where test and control ceils are both on
scale and identify the test and background/control cell popu-
lations (or microspheres, etc.) by appropriate gating.

2. Find the medians of the test (Tm) and control (Cm) population
signals for the measurement of interest.

3. Find the 86th percentile of the control population (C86). In a
normal distribution, this percentile would be one sp above the
mean. (Evaluate the medians and 86th percentile in linearized
units if they were measured on a logarithmic scale.)

5. The “yardstick” (Y) for comparison is twice the signal differ-
ence between the 86th percentile and the median of the control
population:

Y = 2*(C8 —~ Cm).

6. The ratio (R) of the difference between the test population
median and the control population median to this yardstick,
that is,

R = (Tm - Cm)/Y,

can be used as a measure of signal quality, something like a
signal-to-noise ratio.

For example, the antibody concentration giving the highest ratio
of positive staining to background by this measure would be
expected to provide the most sensitive detection for low levels of
antigen. The yardstick unit can be expressed as a dye sensitivity for
the particular type of measurement if the signal scale has been
calibrated with test particles of known equivalent dye content.

The “yardstick” corresponds to two sps for a normal distribu-
tion. If we mixed particles with a background fluorescence distri-
bution (median Cm) with equal numbers of particles with back-
ground plus Y added signal (median Cm + Y), we would expect
about 95% of the particles measured above signal level Cm + Y
to be from the “real” labeled population.

Compared with a direct evaluation of the two sp point, the 86th
percentile is better defined and less vulnerable to gating choices
that include or exclude a few events on the tail of the control
distribution.

Absolute signal levels—photoelectron estimation

One of the fundamental characteristics defining the quality of
fluorescence measurements is the number of photoelectrons that
contributed to defining the measurement value. For example,
even if perfectly uniform light pulses were generated, the mea-
surement uniformity would be limited by the statistical variation
in the numbers of photoelectrons produced at the photomultiplier
tube photocathode. Thus, knowledge of the relation between
number of photoelectrons and signal level allows us to estimate
the best possible measurement uniformity at any particular signal
level.

The following procedure provides an estimate of the absolute
signal level in terms of the number of photoelectrons contributing
to the measurement value for a standard particle, establishing a
value that can be used to compare different instruments (using the
same standard particle sample under similar excitation and emis-
sion wavelength conditions), different electronic circuitry (such as
peak height versus peak area), or different signal channels on a
single instrument. The method presented here is similar to that
described by Steen [11]. The procedure works best for particles
with good uniformity (CV less than 5%) because it depends on the
increase in measurement variability as the amount of light reach-
ing the detector is decreased.
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Fig. 50.6. Photoelectron signal estimation using uniform microspheres. The standard microspheres were the Rainbow Fluorescent Particles, 3.2 micron
(Spherotech, Inc., Libertyvilie, IL). They were measured on a Becton Dickinson FACStarPlus using 488-nm excitation and a 530/30-nm bandpass filter.
Measurements were taken with no attenuation and with ND 0.5, 1.0, and 1.3 for a signal range of about 20-fold. Light scatter gating was used to isolate
the main single particle peak in each data set. The mean signal level and CV of that peak in green fluorescence were calculated with exclusion of clear
outlier events. The plot shows the reciprocal of the mean signal level versus the square of the CV. A linear fit to the four points gives a constant equaling
the square of the intrinsic CV and a slope that is the reciprocal of the photoelectron estimate per unit of signat level.

Materials. Flow cytometer, standard particles, and several neu-
tral density filters in the optical density range from ND 0.3 to 2.0
(such as from Melles-Griot, Irvine CA).

Methods

L. Optimize the instrument alignment using the standard micro-
spheres.

2. Set the selected fluorescence measurement channel to the
lowest linear gain (or at least a gain at least 10-fold below the
highest available). Adjust the PMT voltage to position the
standard particles near but not at the top of the scale. Record
data and evaluate the peak signal mean P, (=peak position/
linear gain) and coefficient of variation (CV) for this configu-
ration. (Light scatter gating will probably be helpful in limiting
these evaluations to the main population of single particles.)

3. Insert the lowest o.d. value neutral density filter in the mea-
surement channel. Adjust the gain on the linear amplifier for
that channel to bring the microsphere peak to somewhere near
midscale. Evaluate the CV and peak signal mean for this
condition.

4. Repeat 3 for each neutral density filter. (Stop if the CV goes
over about 20%.)

5. Plot 1/P, versus CV? as is illustrated in Figure 50.6. Fit a line
to these points. The estimate of the photoelectron events (PE)
at the PMT on this channel is given by

PE = (Py/m) * 10%,

where P, is the unattenuated signal mean and m is the slope of

the fitted line. The 10* factor comes from using CV as a
percent.

6. The constant in the linear fit is the square of the intrinsic CV
of the measurement. The intrinsic CV (CVI) inctudes inherent
variation in the particles plus flow and laser variations but
excludes photoelectron statistics. (Because the x axis is 1/signal.
the intercept corresponds to the projected measurement at
infinite signal level.)

In the example shown in Figure 50.6, the fit is y = 11.522 +
11243x and the unattenuated signal mean is 1358 units. This leads
to

PE = 1358/11,243 * 10,000 = 1208 photoelectrons
CVI = (11.522)' = 3.4%.
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