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DonaL B. MUrRPHY AND LEONORE A. HERZENBERG

The laboratory mouse has been an invaluable resource for basic
and biomedical mammalian research. It is ideally suited for this
purpose because of its small size, relatively short generation time,
and comparatively low cost. These characteristics, plus the desire
to control genetic variability, encouraged the development of a
large number of different types of standard and highly specialized
inbred mouse strains. In addition, a wide variety of genetically-
manipulated mice have recently been produced in which specific
genes have been added to, or deleted from, the genome. The ease
with which these transgenic and knockout mice can be produced
belies the difficulties involved in breeding them for rigorous study,
particularly where several generations of mice traceable to the
same founder may be required to complete the necessary work.

This overview, and the chapters in this section, provide an
introduction to the laboratory mouse and its various forms.
Included is a description of the production and use of inbred,
mutant, congenic and recombinant inbred strains. In addition,
transgenic and knockout mice are discussed with respect to the
various ways in which these mice are bred, the implications that
the use of different breeding schemes has for subsequent study,
and methods that can potentially speed the development of strains
with minimal intra-strain genetic variability. For greater detail on
genetics and probability in mouse breeding systems see Green [1];
for an update on concepts and applications in mouse genetics see
Silver [2]. Tables at the end of this overview and elsewhere in this
section list many of the commonly available mouse strains and
genetically-manipulated mice; resources for additional informa-
tion are referenced.

Inbred strains

By convention, mouse strains that were started by crossing two
unrelated mice and then inbreeding by brother-sister mating for
20 or more consecutive generations are designated as inbred
strains [3, 4]. At 20 generations, the probability that the strain
carries residual heterozygosity is 0.014, which means alleles at
roughly 1% of the loci are likely to be different and will segregate
in the progeny. After an additional 40 generations of incrossing,!
strains essentially reach 100% homozygosity [5]. Members of an
inbred strain are thus genetically identical and can be used to
explore the influence of experimental or environmental variability
on a given trait while keeping genetic variability constant. Expe-
rience has shown that mice in strains inbred for 20 generations are
usually sufficiently similar for most studies. In addition, even with

! An incross is a mating between genetically identical individuals, such
as members of the same inbred strain, or between individuals that are
homozygous for the same allele at a given locus (e.g. A/A x A/A or a/a x
a/a).

highly inbred strains, spontaneous mutations can occur and are
either quickly lost or fixed.

Inbred strains are particularly important because they allow the
use of a standardized resource by many different laboratories and
permit repetition of experiments at different points in time. A
wide variety of inbred strains are used in immunology, the most
common being A, AKR, BALB/c, CBA, C3H, C57BL, DBA, and
SJL and their substrains [6]. For a more comprehensive listing of
inbred strains and their characteristics, see [7, 8]. Some of these
strains, notably C57BL, have been used in the production of even
more highly specialized strains, which are discussed below. A new
set of inbred strains, derived from the autoimmune strains NZB
and NZW and which exhibit different patterns of disecase, may also
be of interest [9].

Non-inbred mice

Non-inbred mice are also used in basic research. Examples
include: mice that are random bred so that the chance that any
male or female will be selected for breeding is equal or mice that
are outbred where matings are set up between genetically unre-
lated individuals, usually to maximize heterozygosity and hybrid
vigor. For a discussion of these and other types of mice and
breeding systems, see Green [1, 10] and Klein [11]. Non-inbred
mice are used when genetic variability is desired or is considered
to be irrelevant.

Mutant strains

Strains known to carry a mutated gene are referred to as mutant
strains. Mutant strains commonly arise when a spontaneous or an
induced mutation occurs and is fixed by inbreeding. When an
inbred mutant strain differs from its progenitor strain at a single
locus, the strains are referred to as coisogenic strains [12]. The
close genetic relationship between coisogenic strains makes them
particularly useful for studying the function of a single gene and
its interaction with other genes. A listing of H-2 mutant strains is
included in the chapter by Melvold (entitled “H-2 Mutations”);
and a description of single gene mouse models of immunodefi-
ciency and autoimmune diseases is included in Chapter 150. For
additional listings, see [13, 14]; for a discussion of transgenic and
knockout mice, see below.

Congenic strains

Congenic strains are inbred strains that are genetically identical
except for differences in a limited segment of chromosome [12,
15]. This segment of chromosome contains.a marker gene and
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closely linked? genes that have been selectively bred onto a
desirable inbred background. Congenic strains were initially pro-
duced to study particular alleles on specific genetic backgrounds
and to contrast the behavior of a pair of alleles where only they
(and closely-linked genes) differ between the test strains. Current
methodologies for creating genetically-manipulated mice have
now greatly increased the number of congenic strains, since
breeding a newly-engineered gene onto an inbred background is
one way to develop genetically-homogeneous mice carrying the
engineered gene. Congenic strains are usually produced by ini-
tially crossing a donor mouse carrying the desired gene (allele) to
an inbred recipient strain and then repeatedly backcrossing? to the
same recipient strain for at least 10 generations. The recipient but
not the donor mouse must be from an inbred strain. At each
backcross generation, progeny that express the desired gene are
selected. Heterozygous progeny from the final backcross are then
intercrossed* and offspring homozygous for the selected gene are
used as founders of the new congenic strain.

With this breeding scheme, donor derived genes that are
unlinked? to the selected gene are rapidly lost. Half of those that
remain are lost at each backcross generation. Thus, the frequency
of unlinked donor genes remaining after n backcrosses is 1/2°. In
contrast, genes linked to the selected gene persist until crossovers
separate them. The rate at which linked genes are lost is depen-
dent on their proximity to the selected gene. After 10 backcross
generations, the new congenic strain and the recipient strain used
for backcrossing are 99.9% identical at unlinked loci and differ at
the selected marker locus and at tightly linked loci, usually
mapping within about 10 centimorgans on either side of the
marker locus. ‘

In practice, congenic strains produced by backcrossing for 10
generations are usually similar enough to the recipient strain for
most studies. However, some laboratories opt to continue back-
crossing for another 5-10 generations to further reduce the
disparity at loci closely linked to the marker locus and at the few

remaining unlinked loci. In addition, over time, the new congenic -

strain and the recipient strain will begin to differ from one another
due to fixation of random spontaneous mutations [5]. Therefore,
some laboratories also cross the congenic strain to the recipient
strain after every 10-20 generations of incrossing and rederive the
congenic strain.

Schemes for decreasing the number of backcross generations
required to generate congenic strains are currently under devel-
opment. In essence, these schemes utilize genetic markers spread
throughout the genome to select backcross mice for breeding that
have the fewest alleles derived from the strain that donates the
desired gene. In 1967, Klein and Herzenberg [16] used skin graft
survival (from the backcross animal to backcross strain) to reduce
the number of backcross generations required to develop a usable
immunoglobuiin heavy chain gene congenic strain to 5; however,
the method was too cumbersome for routine use. In a new
approach to this problem, molecular genotyping methods are

2 Linked genes are genes on the same chromosome.

3 A backcross is a mating between an individual that is heterozygous at
a given locus and an individual that is homozygous for one of the two
parental alleles at that locus (e.g., A/a x A/A or A/a x a/a).

* An intercross is a mating between individuals that are heterozygous for
the same two alleles at a given locus (e.g., A/a x A/a).

5 Unlinked genes are genes on different chromosomes.
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Table 149.1. Selected H-2 congenic strains*

Recipient Donor
Congenic Strain H-2 Strain Strain Producer
BALB.A a  BALB/cAn A/l Lil
B10.A C57BL/10SnSg ~ A/WySnSg Sg
C3HA C3H/HeHa A/MeHa Ha
ABY b A/WySn Brachyury Sn
BALB.B BALB/cAn C57BL/10Sn  Lil
C3H.B10 C3H/HeJSf C57BL/10) Sf
C3HSW C3H/HeDiSn Swiss Sn
D1.LP DBA/1J LP/J Sn
B6-H-2¢ d C57BL/6By BALB/cBy By
B10.D2 C57BL/10Sn DBA/2J Sn
-D1.C DBA/1J BALB/c] Sn-
A.CA f A/WySn Caracul Sn
B10O.M C57BL/10Sn Non-inbred Sn
BALBK k  BALB/cAn C3H/An Lil
B6.C3H C57BL/6J C3H/An Lil
B6-H-2* C57BL/6)Boy AKR/JBoy Boy
B10.AKR C57BL/10) AKR/J Lil
B10.BR C57BL/10Sg C57BR/c Sg
B10.K C57BL/10) CBA/J Sf
B10.P p CS7BL/10Sn P/J Sg
B10.G q C57BL/10SnSg  Grey lethal Sg
B10.Q C57BL/10SnSg  DBA/1J Sg
C3H.Q C3H/Jst STOLI/Lw Sf
B10.R111 (7INS) r C57BL/10Sn R111/WyJ Sn
A.SW s A/WySn. - Swiss ~ Sn
BALB.S BALB/cBy SJILJ Mrp
B10.S C57BL/10SnSg ~ A.SW/Sn Sg
B10.PL (73NS) u  C57BL/10SnSg  PLJ Sn
B10.SM (70NS) v C57BL/10Sn SM/J Sn

* Adapted from Klein [19] and Shreffier [30]. For complete list of H-2
congenic strains, including H-2 recombinant strains, see [19]). B10 =
C57BL/10, B6 = C57BL/6.

being developed that should soon make it possible to develop
congenic mouse strains quickly and easily [17, 18]. This will be
particularly important for moving genetically-engineered genes
(transgenic and knockout) onto defined genetic backgrounds (see
below).

Congenic strains have been extremely useful for studying the
behavior of different alleles at a single locus or closely linked loci
on the same genetic background. They have also been used for
testing for close linkage of a particular gene to the gene selected
in making the congenic strain. Since some congenic strains may
also differ at unlinked loci (even after 10 backcross generations,
there is still a 0.1% chance that unlinked genes derived from the
mouse providing the selected marker gene are present), putative
linkage identified in this way should be confirmed by segregation
analysis to formally prove that the two genes in question are
closely associated.

A number of different types of congenic strains have been
widely used in immunology. These include the H-2 congenic
strains listed in Table 149.1 and minor histocompatibility congenic
strains described in Chapter 152. Other sets of congenic strains
differ for immunoglobulin allotypes or cellular alloantigens (see
{19] for listings). For H-2 and immunoglobulin allotype recombi-
nant haplotypes and strains, also see [19]. Several double congenic
strains, differing at /-2 and at a segment of chromosome marked
by an unlinked locus, have also been produced [19].
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Table 149.2. Selected recombinant inbred (RI) strains*

RI Progenitor Strains Number of

Strain ? 3 Strains Holder
AXB A/ C57BL/6)

BXA  CS7BL/6J AlJ 4 JAX
AKXD AKR/J DBA/2] 25 Taylor
AKXL AKR/J C57L/1 18 Taylor
BXD C57BL/6J DBA/2) 26 Taylor
BXH C57BL/6) C3H/HeJ 12 Taylor
CXB BALB/cBy DDK 13 JAX
CXDD  BALB/cBy) DDK 24 Guenet
DDXC DDK BALB/cByJ

CXJ BALB/cKe SJL/J 10 JAX
CXS BALB/cHeA  STS/AHilgers 14 Hilgers
LXPL G571 PLJ 1 Taylor
NX8 NZB/lcr Cs8/) 12 Riblet
NX129 NZB/BINJ 129/1 10 JAX
NXSM . NZB/BINJ SM/) 16 Eicker
OXA 020/A AKR/FuRdA 14 Hilgers
SMXA SM/J A/ 27 Nishimura
SWXI SWR/Bm SJIL/Bm 14 Beamer
SWXL SWR/J CsS7L/3 7 JAX
129XB 129/SvPas-C CS57BL/6JPas 13 Guenet

* In some cases, DNA only may be available. See Taylor [21] for
additional RI strains and for most recent update on loci characterized and
strain distribution patterns of alleles. Adapted from Taylor {21] and Silver

(2l

Recombinant inbred strains

Recombinant inbred (RI) strains are produced by inbreeding
(brother X sister mating) unselected F2 mice derived from crosses
between two inbred strains [5, 20, 21]. This breeding scheme
results in the initial random assortment and subsequent fixation of
genes from the two progenitor strains. When inbreeding is
complete, each RI strain is homozygous for either the maternal or
paternal progenitor strain allele at any given locus. Since these
alleles assort randomly, no two RI strains carry the same set of
alleles when all loci are taken into consideration. Consequently,
no two RI strains are identical.

Several well characterized sets of RI strains have been devel-
oped in which the progenitor origins of alleles at many of the loci
have been established. Comparison of expression of alleles at a
given, unmapped gene in the RI strains with the pattern of
expression of alleles derived from the progenitor strains thus
provides a rapid scan for genes likely to segregate together. RI
strains have been very useful for conducting genetic linkage
analyses, gene mapping, and analysis of complex genetic traits. As
with congenic strains, putative linkage should be confirmed by
segregation analysis, particularly if the number of RI strains in a
given set is limited. A selected list of strain combinations used to
generate sets of RI strains is included in Table 149.2. For a more
complete listing of RI strains and a listing of strain distribution
patterns of alleles, see [21].

In addition to RI strains, recombinant congenic (RC) strains
are also available [22]. These strains are produced in the same way
as RI strains, except that the F1 is backcrossed twice to one of the
progenitor strains before inbreeding. This limits the amount of
variation between the RC strains and the progenitor strain used
for backcrossing. RC strains have been particularly useful in the
analysis of complex quantitative genetic traits. For a listing of RC
strains and strain distribution patterns of alleles, see [23].

1493

Transgenic and knockout mice

The production and use of transgenic and knockout mice is
discussed in detail in several places in this Handbook, e.g., see the
preceding section, “Transgenic, Knockout, and Gene Targeted
Mice.” Clearly, the ability to tailor-make mutants of choice has
added an exciting and important new dimension to basic science.
Here, we discuss these mice with regard to the breeding schemes
that can be used to propagate them and to decrease genetic
variability amongst mice carrying the same genetically-engineered
gene. For simplicity, the focus will be on knockout mice.

From a genetic viewpoint, the ideal way to produce a knockout
mouse is by manipulation of embryonic stem (ES) cells from an
inbred strain followed by crossing to the same inbred strain from
which the ES cells were derived. F1 mice from this cross that are
heterozygous for the manipulated gene can then be intercrossed
to produce F2 progeny that are homozygous for the manipulated
gene. The F1 and F2 mice are homozygous and identical at all
other loci. Provided the knockout is not lethal, the homozygous F2
mice can be incrossed by brother-sister mating thereafter as a
typical inbred strain. This production scheme rapidly produces an
inbred knockout strain that is coisogenic with the embryonic stem
cell donor strain: all progeny within each strain are genetically
identical, and the two strains differ only for expression of the
manipulated gene.

Producing knockout mice by outcrossing® to another inbred
strain (not the ES cell donor strain) is an entirely different matter.
F1 progeny from this cross are heterozygous at all loci and are
genetically distinct from either progenitor strain. In the second
generation, usually produced either by intercrossing the F1 mice
to produce F2 progeny or by backcrossing the F1 mice to one of
the two progenitor strains, all progeny will differ genetically from
each other as well as from the progenitor strains. The difference
in background genes in mice bred this way can significantly
influence the phenotype of the knockout mice. Littermates are
not adequate controls because background genes segregate inde-
pendently. Successive brother-sister matings of F2 mice begins the
establishment of one or a series of RI lines, which can take many
generations to inbreed sufficiently to remove genetic variability.
Even then, no two founder strains produced in this way can be
expected to be identical.

Unfortunately, because the 129 strain from which the common-
ly-used embryonic stem cell is derived does not breed well, most
of the knockout mice produced to date were initially outcrossed to
another strain and thus do not have a standardized genetic
background. The best way to recover in this situation is to produce
a congenic strain carrying the knockout gene by crossing existing
mice to an inbred strain (ideally, backcrossing to the donor strain
for the ES cells or to the strain used in the initial outcross;
alternatively, crossing to a commonly used inbred strain such as
C57BL) and repeatedly backcrossing the progeny to the same
inbred strain. In cases where the manipulated gene is located in a
segment of chromosome of the same origin as the backcross
strain, the backcross and congenic strains will have a high

¢ An outcross is a mating between genetically unreldted individuals or
between individuals that carry different alleles at a given locus (e.g., A/A
X a/a).
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Table 1493, Selected targeted mutations*

b

Initial
Protein Locus Phenotype Report(s)
Abl Perinatal lethality; multiple developmental defects; lymphopenia [31-33]
Apolipoprotein E Hypercholesterolemia and atherosclerosis [34-36]
B-cell lineage-specific activator protein Neonatal lethality; posterior midbrain morphological defects; B-cell [37)
(BSAP) (Pax5 gene) development disrupted
B7 (CD28 ligand) Decreased co-stimulated response to alloantigen [38]
Bcl-2 Neonatal lethality; lymphocytopenia; multiple growth defects; tremor; melanin [39, 40]
synthesis defect, polycystic kidneys
Belx €13 lethal; neuronal and hematopoietic apoptosis [41]
Bmi-1 Hematopoietic defects; ataxia; seizures; posterior transformation [42]
Calcium-calmodulin-dependent protein Deficient hippocampal long-term potentiation and long-term depression; [43, 44]
kinase Ila (a-CaMKII) impaired spatial learning; seizure prone; abnormal fear and pain responses :
CD2 No defects observed [45]
CD4 Decreased helper T-cell activity [46, 47]
CD8-a (Lyt-2) Absence of cytotoxic T cells 48]
CDhg-g Reduced thymic maturation of CD8+ T cells 49]
CD18 partial Mild granulocytosis; impaired immune responses 50]
CD23 Defects in IgE regulation and IgE-mediated signalling. 51-53]
CD28 Decreased T-cell response to lectins; decreased IL-2Re, IgG1, and IgG2b 54]
CD40 Defects in thymus-dependent humoral immunity 55]
CDA40 ligand (CD40L) Defects in thymus-dependent humoral immunity 56, 57)
CD45 exon 6 Impaired T-cell maturation 58]
Corticotropin releasing hormone (CRH) Decreased adrenal corticosterone release in response to stress; offspring of 59]
homozygous mother perinatal lethal due to lung dysplasia
Cyclic AMP-responsive element-binding Lack late phase of CAl long-term potentiation; decreased long-term memory; [60]
protein (CREB) a and § isoforms increase in CREM N :
Cytochrome b, phagocyte-specific oxidase Increased susceptibility to pathogens; model for X-linked chronic {61]
granulomatous disease
DNA polymerase B modification Demonstrates feasibility of tissue-specific disruption using Cre-loxP system [62]
E2A Neonatal lethality; growth retardation; lack B cells [63, 64]
Fc receptor vy subunit Pleiotropic effector cell defects [65]
Fgr No defects observed [66]
Fos Perinatal lethality; osteopetrosis; defects in gametogenesis and hematopoiesis [67, 68]
Fyn (p59%") Signaling defect in thymocytes but not peripheral T cells; impaired long-term [69-71]
potentiation; abnormatl olfactory glomeruli and hippocampal morphology;
suckling defect
Fyn (p597"T) Signaling defective in thymocytes but not peripheral T cells [72)
Granulocyte colony-stimulating factor Granulopoietic defects [73]
(G-CSF)
Granulocyte-macrophage colony- Pulmonary pathology; apparently normal hematopoesis [74, 75]
stimulating factor (GM-CSF)
Granzyme B Cytotoxic T-lymphocyte defect 76]
Growth-associated protein-43 (GAP-43) Perinatal and neonatal lethality; abnormal path-finding at the optic chiasm 77]
Hck Phagocytosis impaired; increased lyn activity 66]
Hox 11 No spleen 78]
Hox-A3 (Hox 1.5) Perinatal lethal; athymic; aparathyroid; throat, heart, arterial, and craniofacial 79]
abnormalities
Ik (Ikaros gene products) Neonatal lethality; reduced size; lymphocytes and lymphoid progenitors absent. 80)
Immunoglobulin D Reduced number of mature B cells 81, 82]
Immunoglobulin E No defects observed 83]
Immunoglobulin E receptor a chain Resistant to cutaneous and systemic anaphylaxis 84]
Immunoglobulin « intron enhancer No Igk rearrangement; slight reduction in splenic B cells 85]
Immunoglobulin « light chain Reduced number of B cells 86, 87)
Immunoglobulin « replaced with human B cells produce human-mouse chimeric «-bearing antibodies 88]
constant region
Immunoglobulin 4 membrane exon Absence of B cells 89]
Intercellular adhesion molecule-1 (ICAM-1) Leukocytosis; impaired inflammatory and immune responses 90, 91]
Interferon «/B receptor Anti-viral defense impaired. 92]
Interferon y Multiple immune response defects 93]
Interferon vy receptor Multiple immune response defects 94]
Interferon regulatory factor 1 (IRF-1) Decreased CD4~8"% T cells; impaired interferon y response 95, 96]
Interferon regulatory factor 2 (IRF-2) Premature lethality; defects in hematopoesis; immunocompromised 95]
Interleukin-18-converting enzyme (ICE) Decreased I1-1 production; resistance to endotoxic shock 97]
Interleukin-2 (IL-2) Premature lethality; normal T-cell subset composition, but dysregulated 98]
immune system; inflammatory bowel disease
Interleukin-2 receptor y chain (IL-2Ry) Lymphopenia; absence of NK cells 99}
Interleukin-4 (IL-4) CD4" (Th2)-produced cytokines reduced; serum IgG1 and IgE reduced 100, 101]
Interleukin-6 (IL-6) Higher bone turnover rate; no bone loss when ovariectomized; immune 102, 103]

defects; reduced IgA producing cells
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Table 149.3. Continued

149.5

Initial
Protein Locus Phenotype Report(s)
Interleukin-7 receptor (IL-7R) Early lymphocyte expansion severely impaired [104]
Interleukin-8 receptor (IL-8R) Lymphadenopathy and splenomegaly; increased B cells and neutrophils [105]
Interleukin-10 (IL-10) Reduced growth; anemia; chronic enterocolitis [106]
Invariant chain (Ii) MHC class II transport and function defective; reduced CD4* T cells [107-109]
Jy-Ep immunoglobulin heavy chain Suppression of switch recombination at u gene; absence of B cells [110]
(joining and enhancer regions)
Jy; immunoglobulin joining region Absence of B cells [111, 112]
Jy replaced with rearranged V region Rearranged V transgene expressed in all B cells [113]
AS Defective B cell development [114]
L-Selectin Defects in lymphocyte homing and leukocyte rolling and migration. [115]
Lck (p56'*) Thymic atrophy; reduced CD4*8* T cells; very few mature T cells; [116]
immunocompromised
Leukemia inhibitory factor (LIF) Decreased hematopoietic stem cells; deficient neurotransmitter switch in vitro [117, 118]
but normal sympathetic neurons in vivo; blastocysts do not implant in
. homozygous mother
Lipoxygenase (5-lipoxygenase) Resistance to certain inflammatory agents [119, 120]
LMP-7 Defects in MHC class I expression and antigen presentation [121]
Major histocompatibility complex class II Decreased CD4%8~ T cells; immune defects {122]
Aa (MHC II Aa)
Major histocompatibility complex class II Decreased CD478~ T cells; deficient cell-mediated immunity; some B-cell {123, 124]
AB (MHC II AB) dysfunctions; inflammatory bowel disease
Microglobulin (B82-microglobulin) Decreased CD478" T cells [125-127]
NF-IL6 Defects in macrophage bactericidal and tumoricidal activities [128]
NF-«B p50 subunit Multifocal defects in immune responses [129]
Oct-2 Perinatal lethal; decreased IgM+ B cells : R $130]
p53 Spontaneous tumors; thymocytes resistant to apoptosis by rad;auon or [131-133]
etoposide
Perforin Impaired CTL and NK cell function; unable to clear LCMV infection [134-136]
Pim-1 Impaired response of early B cells to interleukin-7 and steel factor; impaired [137]
response of bone marrow-derived mast cells to interleukin-3
PU.1 e16-18 lethal; defect in development of lymphoid and myeloid cells [138]
Recombination activation gene 1 (RAG-1) Absence of mature B and T lymphocytes 139, 140]
Recombination activation gene 2 (RAG-2) Absence of mature B and T lymphocytes 141]
RelB Multiorgan inflammation; hematopoietic defects 142, 143]
Selectin (P-selectin) Defects in leukocyte behavior; increased neutrophils 144]
syl class switch region Shutdown IgM-IgG class switch at that allele 145]
T-cell factor-1 (TCF-1) Defect in thymocyte development 146]
T-cell receptor a (TCRa) Loss of thymic medullae; devoid of single positive thymocytes; no aB T cells; 147, 148]
inflammatory bowel disease
T-cell receptor B (TCRB) Reduced % CD4*8%, and total number of thymocytes; inflammatory bowel [147]
disease
T-cell receptor 3 (TCR3) Absence of y8 T cells 149]
T-cell receptor n (TCR7) Neonatal lethal; (partial knockout of Oct-1 on opposite strand) 150]
T-cell receptor /¢ (TCRn/¢) Lower birth rate; T cells develop normally; (partial knockout of Oct-1 on 151]
opposite strand)
T-cell receptor { (TCRY) Decreased CD4*8* thymocytes and single positive T cells; low TCR [152-154]
expression
T-cell receptor {/n (TCR{/7) Decreased CD4*8* thymocytes and single positive T cells; low TCR [155])
expression
Tal-1 (SCL) €9-10 lethal; hematopoietic defect [156]
Terminal deoxynucleotidyl transferase Decreased TCR diversity [157)
(TdT)
Transforming growth factor a (TGFa) Hair follicle and eye defects; allelic with waved-1 (wa-1) [158, 159]
Transforming growth factor 81 (TGFg1) Neonatal lethal; multifocal inflammatory disease [160, 161]
Transporter associated with antigen MHC class I transport and function defective; lack CD4~8* [162]
processing 1 (TAP1)
Tumor necrosis factor receptor 1 (TNF-R- Resistant to endotoxic shock; susceptible to Listeria infection [163, 164]
1) (p55)
Tumor necrosis factor receptor 2 (TNF-R- Resistance to TNF-induced necrosis and death [165]
2) (p75)
Tun)zor necrosis factor-g (TNF-B) No Peyer’s patches or lymph nodes; increased IgM™* B cells [166}
(lymphotoxin)
Vascular cell adhesion molecule 1 €8-10 lethality; chorioalantoic fusion disrupted; surviving adults have elevated [167]

(VCAM-1)

mononuclear leukocytes

* Modified with permission from Brandon E. P, Idzerda R. L., McKnight G. S. Targeting the mouse genome: a compendium of knockouts (Parts
I-III). Current Biology 1995, Vol 5 Nos. 5-8. Any information or comments on the table directed to Brandon et al can be submitted through the World
Wide Web: go to http://www.cursci.co.uk/BioMedNet/biomedbi.html, and click on General Biology.
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likelihood of being coisogenic. The number of backcross genera-
tions required to develop the strain can be decreased by applica-
tion of new molecular techniques currently being developed to
speed the establishment of congenic strains (see Congenic strains,
above).

Similar concerns exist for the breeding and use of transgenic
mice, particularly those produced by genetic manipulation of ova
from non-inbred or hybrid mice. Production of congenic strains
from knockout and transgenic mice is part of the Jackson Labo-
ratory’s Induced Mutant Resource program, which includes over
140 strains that are generally available to the scientific community
[24]. A selected list of knockout mice of interest to immunologists
is included in Table 149.3. For a more complete listing of
knockout mice, see [25], and for a computerized database for
transgenic and knockout mice (TBASE), see [26].

In the future, the laboratory mouse will continue to be an
indispensable resource, even more so than ever before. Many of
the current generation transgenic and knockout mice remain to be
fully characterized, and many more will be produced. With new
technologies on the horizon (e.g., gene replacement (knock-in
mice) [27), targeted gene duplication [28]), additional types of
mutants will be generated. These resources have and will continue
to facilitate tremendous advances in our understanding of basic
biological systems. This, in turn, will allow the development of
better regimens for treating and preventing human disease and
will improve our overall quality of life [29].
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