Chapter 182
Flow Cytometric Evaluation in AIDS

MARIO ROEDERER AND ALAN LANDAY

Flow cytometric analyses can provide an enormous amount of
information about the state of the immune system. [n a disease of
the immune system, such as the acquired immunodeficiency
syndrome (AIDS), such information is critical for prognosis,

disease staging, as well as monitoring of therapeutic interventions.-

However, it has also been central to the development of an
understanding of the immunopathogenesis of the diseases caused
by the human immunodeficiency virus (HIV).

A vast majority of flow cytometric analyses have involved
enumeration of simple subsets of peripheral blood mononuclear
cells (PBMC), including T cells (both CD4* and CD8™), natural
killer (NK) cells, B cells, and monocytes; a few studies have deait
with neutrophils. Most of these studies involved the use of only
one or two simultaneous immunofluorescence measurements, and
were able to distinguish only broad subsets of cells.

More recently, the advent of practical three-color flow cytomet-
ric analyses have brought about significant advances in the
understanding of the immunopathogenesis accompanying HIV
disease, in terms of the specific changes of subsets within T cells,
B cells, etc. In particular, the T cell lineage, which contains at least
a dozen identifiable phenotypic subsets, has significant changes in
the representation of quasi-activated cells, memory and naive
cells, as well as other functionally-defined subsets.

Detailed understanding of these changes will be of significant
help to the understanding and treatment of AIDS. By identifying
the changes in all the subsets of leukocytes, we can begin to
ascribe the mechanisms by which HIV damages the immune
system. These may lead us to specific immunotherapies that can
restore immune function, the basic defect caused by HIV disease.
Likewise, identification of important changes in subsets will
provide us with surrogate markers for disease that may be useful
for prognosis, diagnosis, and monitoring studies.

Overview. In this chapter, we present a comprehensive review of
the phenotyping studies that have been performed on HIV-
infected individuals since the early 1980°s. Some mention of
functional relevance of these subsets is provided to demonstrate
relevance of the measurements; however, the literature on func-
tion is vast and is beyond the scope of this review.

The review of phenotypic studies is grouped by subset: first T
cells (CD4™ and CD8"), then y8-T cells, B cells, NK cells,
monocytes, and neutrophils. Most studies reported only subset
enumerations in terms of frequency (such as percent of lympho-
cytes) or in terms of absolute numbers (cells per ul of whole
blood), or both. A few studies also measured antigen density,
quantitating how many antigen molecules per cell are present (in
relative terms). These types of measurements are specifically
identified.

This chapter is organized in two sections. The first is the review
of the phenotypic studies performed by flow cytometry for AIDS.
This section is grouped by cell type, starting with T cells (CD4 and

CD8), then NK and B cells, and finally monocytes and granulo-
cytes. The second section attempts to address the complexities of
the flow cytometric analyses which have led to considerable
confusion, as noted in the review. Some examples of the problems
are given, along with suggestions for resolving and avoiding these

* problems in future immunophenotyping studies.

T cells

The earliest (1982-1984) immunologic defect noted in HIV-
infected adults, identified phenotypically, was the decrease in
representation of CD4 T cells and increase in CD8 T cells [1-6].
These studies were first performed before HIV was identified. on
homosexual men presenting otherwise rare syndromes. The find-
ings were soon confirmed in HIV-infected hemophiliacs {7], who
received blood products concentrated from thousands of donors
prior to HIV-screening of blood.

Soon after, it was noted that HIV-infected people had a
significant increase in the proportion of T cells that had an
activated phenotype. Increased HLA-DR expression on T cells
was first noted by Mildvan et al [2]; increased CD38 expression
was first noted by Schroff et al [8]. These T cells actually express
a “quasi-activated” phenotype, since they do not also express
either CD25 or CD71, both of which are prototypical markers of
activation of T cells.

T cells can also be subdivided into naive cells (those which have
not encountered antigen, and have most recently arisen from
development), and memory cells (those which have undergone an
antigen-induced differentiation). While the precise phenotype of
naive T cells is still being elucidated, markers that are differen-
tially expressed on the subsets include CD11a (LFA-1), CD11b,
CD28, CD29 (4B4), CD62L (Leu8), CD45RA (2H4), and
CD45RO. None of these markers by itself uniquely identifies the
subsets. CD11a is weakly expressed on naive, and strongly ex-
pressed on memory (an epitope of CDl1la detected by S6F1
appears to be negative on naive T cells). CD28 is expressed on
most T cells, although there is a population of CD28~ cells (which
generally express CD11b). CD29 is a marker expressed predom-
inantly on memory cells. Finally, CD45RA and CD45RO are
generally expressed in a mutually exclusive fashion (except on
activated cells), with CD45RO never appearing on naive T cells
(however, some memory cells are CD4SRA*CD45RO ™). Recent
three-color experiments have shown that naive cells can be more
accurately identified by the combined expression of CD62L and
CD45RA, as well as CD11a-dim [9-11].

The majority of circulating T cells express the af T cell
receptor; a minor subset expresses the yd T cell receptor. Various
studies have attempted to define the T cell VB repertoire for both
CD4 and CD8 populations in HIV disease [12-25]. The goal of
the majority of these studies was to determine whether a deletion
of a specific VB subset could be detected, predominantly among
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the CD4 T cell populations (i.e., superantigen effect). In addition,
it was proposed that certain VB populations might be expanded
among the CD8 T cells: such an observation might identify an
important functional subset that provides protective immunity in
this disease. The results of these studies have been highly variable,
showing numbers of different VB alleles being reduced among the
CD4 T cells and expanded among the CD8 T cells. One interest-
ing study suggested that VB-12 CD4 T cells may be preferentially
infected with HIV [13], thereby adding credence to the hypothesis
that HIV might act as a superantigen. Overall, no clear-cut
pattern has emerged from these studies,

CD4 T cells
Introduction

The hallmark immunologic feature of infection with the human
immunodeficiency virus (HIV) is the depletion of the CD4™ T cell
population [26, 27], since the. CD4" T cell serve as the major
target for HIV by the binding of HIV surface gp120 glycoprotein
with the CD4 antigen [28]. This interaction leads to infection of
the CD4 T cells and results in the gradual decline of CD4 cell
numbers with the ultimate result being the development of an
AIDS-defining condition. Demonstration of this loss of CD4 cells
associated with an immunodeficiency syndrome in homosexual
males is one of the earliest observations in the AIDS epidemic
[27]. This marker served as an important parameter early on in
this epidemic by which patients who were infected could be
evaluated, before we identified that this disease was due to a
retrovirus, and before an antibody test (ELISA) was available.
The importance of CD4 cells in HIV disease pathogenesis has
been recently recognized by the inclusion of a CD4 count less than
200/l in the definition of AIDS [29]. This highlights the impor-
tant role for monitoring CD4 T cell numbers in HIV disease. In
addition, it has been recognized that at a CD4 leve! of 200/ul,
HIV* individuals will develop Pneumocystic carinii pneumonia
[30]. This information has allowed us to utilize this laboratory
measure as a means of implementing prophylactic therapy against
this and other life-threatening opportunistic infections.

The use of CD4 counts in staging and prognosis of HIV disease
is ubiquitous. Nevertheless, there are substantial and complex
problems with the quantitation of this cell type. Issues that are of
consequence to this quantitation include instrumentation, exper-
imental (sample handling, preparation, and staining), biologic
variables (including diurnal or even seasonal variations in lym-
phocyte counts), and data analysis [31-44]. The discussion of
these details is beyond scope of this review.

In addition to monitoring CD4 cell numbers, the function of the
CD4 cell is clearly of central importance to both the host’s cellular
and humoral immune responses. It has been shown in numerous
studies that CD4 cell function is severely compromised in the
HIV-infected host [45-49)]. However, little work has been done to
try to establish whether these changes are due, either wholly or in
part, to the significantly changed representation of subsets within
the CD4 T cells (see below). ‘

Many of the in vitro functional assays have been performed
using cumbersome assays that are difficult to reproduce from
laboratory to laboratory. Current work is underway utilizing flow
cytometric technology to perform such functional assays. In the
future, these types of studies will provide powerful tools for both
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phenotypic and functional evaluation of the CD4 cej| 1, F
technology in HIV disease. . Y FACS

Activation markers

Activation markers on CD4 T cells have not beep ,
characterized as for CD8 T cells, but it is clear that there ;
significant increase in the representation of activated CD4 T C;S“a
Typically, the activation markers on CD4 T cells only beco >
prominent at much later stages of disease than for CD§ T cerl?e
There is an increased representation of CD4 T cells expressins'
HLA-DR [50-57]. While CD38 appears to be increased as wcﬁ
[57}, one group found no change [50]. (Note that in childrep a
great majority of CD4 T cells express CD38; HIV-infect;d
children show a decrease in the expression of CD38 [58]). Finally
there is an increase in CD57* CD4 T cells [59], which are almost’
all CD7~ [60]. However, this is not the “classical” activation
phenotype associated with mitogenically stimulated CD4 T cejlg
since there is no increase (or perhaps even a decrease) in the‘
expression of CD25 [61-63].

Unlike CD8 T cells, few studies have evaluated three-color
staining of activation markers on CD4 T cells. The increased
expression of HLA-DR and CD38 on CD4 T cells are concordant,
since there is an increase in HLA-DR*CD38™ cells [58, 64], but
only a slight increase in HLA-DR™CD38~ cells, and no change in
HLA-DR™CD38™ cells [57].

Memory/Naive markers. Changes in naive and memory markers
on CD4 T cells are probably the least agreed-upon measurements,
In particular, the proportion of CD62L-expressing cells has been
shown to increase [65, 66], remain stable [67-70], or decrease {50,
66, 71, 72). Likewise, CD45RA-expressing CD4 T cells have been
shown to increase [59, 73-77], remain stable [47, 57, 66, 67, 69, 70,

S well

76, 78-81], or decrease [56, 71, 72, 82]. Some of these conflicts

might be explained by differential expression of HIV antigens
[73]; or by the observation that there may be an early increase in
CD45RA expression, followed by a decrease at the onset of AIDS
[52, 81]. CD45RO, which is expressed mutually exclusively with
CD45RA (except for co-expression on activated cells), was shown
to decrease in one study [83], but was significantly increased in
several others [56, 78, 84). Indeed, the increase in CD45RO cells
was seen concomitantly with an increase in CD45RA cells,
suggesting an increase in the double-positive (activated) cells.
Indeed, most HLA-DR™ cells-are also CD45RO™ [56, 64].

CD?29 is also a putative memory marker. The proportion of
CD29-expressing CD4 T cells has been shown either to increase
(in children only) [72], decrease [59, 74, 77, 80, 85], or to remain
stable [47, 63, 67, 69, 72, 76, 81]. The proportion of CD4 cells
expressing either of CD29, CD45RA, or HLA-DR were all higher
in patients with Kaposi’s Sarcoma or opportunistic infections,
compared to asymptomatic individuals {86]. Three-color staining
revealed a decrease in CD4SRA~CD29" cells, but an increase of
CD45RA*CD29™ cells [55].

Using three-color immunofluorescence to more accurately
identify naive cells (i.e., naive cells are CD45RA*CD62L"; all
other combinations are memory T cells), a preferential depletion
of these cells over time can be identified. While
CD45RA~CD62L* cells increase [58], CD4SRACD62L™ cells
(which are activated and probably co-express CD38 and/or HLA-
DR) increase in late stage AIDS [87]. However, there is a
significant, proportionate loss of the CD45RA*CD62L" (naive)
CD4 T cells [58, 87].
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Other markers. In HIV™ individuals, a vast majority (>95%) of
cD4 T cells express CD28. However, in HIV+ individuals, the
CD28" cells are significantly increased [53, 56, 88-91]; these cells
express CD57 [89] and HLA-DR, CD38, and are CD45RO* [56],
and probably express CD11b, which is also increased [53].

Of 61 different monoclonal antibodies tested for the Fifth
workshop. 17 showed different reactivity to CD8 T cells between
HiV-infected and uninfected individuals [91]. The proportion of
(dim) CD21-expressing cells is decreased {92], as well as the
proportion of CD26" cells [93] and CD101~ cells [91].

Functional correlates. Phenotypic functional correlates among
CD4 cell subsets have focused on the potential differential
functional role that CD4 cells have with regard to cytokine
production. The two broad classes of functional subsets based on
cytokine activity have been proposed to involve Thl and Th2 cells.
The Thl cells are responsible primarily for [L-2 and IFN-g
production and promote cellular immune responses, while Th2
cytokines including IL-4, IL-5, IL-6, and IL-10 are responsible for
antibody mediated responses. Recent studies have suggested that
among CD#4 cells, the CD7~ cells are expanded in HIV disease,
and may be associate with a Th2-like phenotype. Delineation of
the phenotypic and functional associates between CD4 and other
cell subsets for cytokine activity will be advanced by utilizing single
cell assays to measure cytokine production by flow cytometry [94].

The changes in the naive and memory subsets of CD4 T cells
may directly influence viremia. HIV preferentially infects memory
CDA T cells in vitro [95]. Consistent with this observation, HIV
replicates preferentially in memory CD4 T cells from infected
patients {96]; there are different requirements for HIV replication
in naive versus memory CD4 T ceils [97). This differential
replication has been suggested to account for some of the selective
functional defects observed in HIV-infected individuals.

CD8 T cells

Introduction. In addition to the characteristic loss of CD4 cells,
there is a concomitant increase in the CD8 cell population. The
CD8 antigen is known to be expressed on not only the T cell
subset but also on a subset of natural killer (NK) cells as well.
Many of the earlier studies evaluating CD8 cells in HIV disease
did not rely on reagents that clearly defined these two subsets.
More recently, it has been recommended in several national
guidelines to combine the CD8 marker with a T cell lineage
marker (such as CD3) to more accurately evaluate the CD8 T cell
subset. :

The rise in CD8 T cells represents an important host immune
response to the virus {63, 98-105]. Numerous functional studies
evaluating both CD8 CTL and antiviral suppressor activity have
demonstrated the important role of the CD8 cell in natural host
defense against HIV disease. This type of response is not unique
to HIV infection and can be seen in many other viral syndromes

(including CMV and other herpes virus infections). As opposed to
the progressive loss of CD4 cells over the course of HIV infection,
the CD8 cell population remains elevated throughout the course
of disease until the very final stages of HIV infection.

As is described below, numerous CD8 markers have been
defined in this disease which may provide important prognostic
information for following a patient over the course of this disease.
These include activation markers, those that identify naive and
memory cells, and those that are associated with cell function. To
date, there have been no conclusive studies demonstrating the

utility of CD8 T cell counts in monitoring therapeutic responses.
but current studies are underway to evaluate these cells in
antiretroviral and immune-based therapeutic protocols. In addi-
tion, clinical trials to expand CD8 cells ex vivo for reinfusion are
in progress, demonstrating the important role of this cell type in
controliing HIV infection.

Activation markers. Perhaps the single most agreed-upon phe-
notype change in HIV-infected adults is the increase in activation
markers on CD8 T cells. The increased frequency of CD8 T ceils
bearing HLA-DR was noted in 1984 [50], and has been noted by
virtually every study on CD8 T cells [51, 52, 54, 56, 66, 69-72, 75,
76, 78-80, 89, 101, 106-118]. In addition, there is increased
expression of the activation markers CD57 [51, 58, 59, 66, 7075,
78,79, 108, 109, 111, 112, 115, 119-124] and CD38 [53, 55, 56, 66,
69-71, 75,79, 89, 101, 106, 107, 112-116, 118, 125]. Originally, the
presence of CD38 and HLA-DR on the CD8 T cells was thought
to indicate that these cells were immature, and that HIV was
inhibiting T cell development {106}; however, we now know that
these markers are present on cells that have an activation profile
and give memory responses. It is interesting to note that in healthy
children not infected with HIV, most CD8 T cells are positive for
CD38, while HIV-infected children exhibit a decrease in the
representation of CD38" CD8 T cells [58].

In general, the increase of HLA-DR expression on CD8 T cells
is seen very early in disease. In fact, it is detectable prior to
seroconversion [113]. While HLA-DR is increased in the asymp-
tomatic phase, increases in CD38 and CD57 occur progressively
throughout disease, with HLA-DR declining in late-stage AIDS
[57, 70, 112, 115]. :

Three- and four-color immunophenotyping has further resoived
these populations. In particular, the elevated expression of CD57
is found only on CD38" or HLA-DR™ cells, and only on
CD45RO™ cells [111]. On the other hand, the increase in
HLA-DR expression occurs equally on the CD57* and CD57~
cells {108]. For the CD8 cells, unlike CD4 T cells, the expression
of CD38 and HLA-DR is not correlated; that is, there are four
subsets expressing the various combinations of these markers. The
studies using three-color analysis have universally shown a decline
in the representation of the. HLA-DR™CD38~ cells; and an
increase in the HLA-DR*CD38" cells [57, 58, 101, 111, 116, 118].
However, changes in the single positive cells are more variable.
The HLA-DR™CD38" cells were seen to increase [101, 118] or
decrease {111, 116); the HLA-DR*CD38~ cells likewise were
seen to increase {116], decrease [101], or remain stable {58, 111,
118]. A prevalence of the HLA-DR*CD38" cells is associated
with a good prognosis for progression of the disease [118].

However, the activation phenotype seen on these cells is
unusual or only partial, because the presence of HLA-DR, CD38,
and CDS57 is not accompanied by activation markers such as CD25
[61-63], CD69, or CD71 [66].

Memory/Naive markers. For CD8 T cells, there is general
agreement that a shift towards the memory phenotype is ob-
served. Since there is a significant increase in activated cells, this
is not surprising (naive T cells are probably only activated after
encounter with antigen, after which they become memory cells).
Consistent with a shift towards memory, two-color studies have
demonstrated a decrease in the proportion of cells expressing
CD62L {50, 65, 68-70, 101, 114, 115], an increase in the CD11a-
bright cells [63, 117, 126, 127], a decrease in CD45RA™* cells [47,
56, 58, 63, 79, 101, 111, 117, 128}, and a commensurate increase in
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the CD45RO™ cells [56, 71, 83, 84, 101, 112, 117, 128]. Interest-
ingly, the changes in CD29 expression are far less marked [47, 63,
117}, suggesting that expression of CD29 is lost upon activation in
vivo.

Some activation markers have been found to be expressed on
CD45RA™ cells [111]: specifically, there were increases in
CD45RA™HLA-DR™ and CD45RA"CD38* cells, but CD57*
cells were only CD45RO™. On the other hand, another study
found that the CD45RA"HLA-DR* cells decreased [55]. In any
case, these cells are not necessarily naive T cells, since some
memory cells can express CD45RA. This will only be resolved
with appropriate four- or five-color immunofluorescence staining.

More recently, three-color studies that more accurately identify
the naive CD8 T cells demonstrate a loss of these cells continu-
ously throughout HIV disease, even when the total CD8 count has
increased [87, 129]. Even in children, in whom a vast majority of
T cells are of the naive phenotype, there is a significant progres-
sion of the compartment towards memory phenotype [58, 71, 84,
129, 130].

Other markers. The CD28 molecule provides important co-
stimulatory signals for T cell activation. The proportion of cells
expressing CD28 decreases significantly with HIV disease [56,
88-91, 101, 124], suggesting that there is a large increase in cells
which have very different activation profiles (and may even be
anergic [124]). Although the CD28~ cells are typically CD11b",
there is also a decrease in the proportion of CD11b* cells [66, 75,
82, 101]. (A decrease in the proportion of these cells occurs
whether the absolute number of CD11b* cells increases [51, 53,
73, 131] or remains stable [74, 77]). The CD28 " cells that increase
appear to be CD38" and/or HLA-DR™, as well as CD45RO*
(89]. Finally, the increased CD28~ cells are predominantly
CD57~ [124]. This loss of CD28 may be associated with increased
Th2-like cytokines, including 1L-4 and IL-10.

Of 61 different monoclonal antibodies tested for the Fifth
Workshop, 22 showed different reactivity to CD8 T cells between
HIV-infected and uninfected individuals [91]. There was in-
creased expression of CD99, but decreased expression of CD101
and CD31 [91]. The relationship of these markers to activation
and/or the naive/memory phenotypes still needs to be established.
The proportion of cells expressing CD26 is decreased [93], and
there were no changes observed in the proportion of CD8 which
dimly express CD21 [92]. Finally, an increase in the expression
(antigen density) of CD11c was noted [126], and one group noted
that the activated CD8 T cells expressing CD38 or HLA-DR had
increased expression of the CD8 molecule itself [107].

Functional correlates. Most of the functional studies attempting
to correlate phenotypic changes in CD4 and CDS8 subsets with
functional alterations have focused on the CDS8 effector cell
population. These studies have attempted to develop correlates of
phenotypic expression with either CTL or anti-HIV suppressor
activity [110, 112, 116, 132]. The major phenotypic marker asso-
ciated with cytotoxic T cell activity is HLA-DR. However, it has
been demonstrated that CD8 T cells expressing HLA-DR (but
lacking CD25) have reduced clonogenic potential, may be ex-
panded by chronic immune activation, and are ineffective in
mounting functional immunity [110). Further evidence of immune
suppression comes from studies of a subset defined as being
CD8"CDS7™ that may inhibit cytotoxic effector cell activity. In
addition to CTL functional studies, CD8 antiviral activity has been
extensively evaluated; cells with the phenotype of CD28+*HLA-

DR™ have been found to be associated with this particular
antiviral function.

Giorgi and colleagues have evaluated the anti-HIV functiona}
capacity of the CD38 and HLA-DR expressing CD8 T cells by
sorting these subsets to purity [116]. The CD38*HLA-DR * cells
showed significant anti-HIV CTL activity; the single positive cells
were also active, but activity was reduced about 50% on a per-cel|
basis compared to the double positive. The CD38 HLA-DR-
population had little activity. These results suggest that the
quasi-activation phenotype is a direct consequence of antigen.
specific immunologic activity. Interestingly, expression of CD3g
on CD8 T cells was correlated with poor prognosis, whereag
expression of HLA-DR in the absence of CD38 was associateq
with good prognosis [118].

v8 T cells

The fraction of T cells bearing the 8 receptor is typically very
low (1 to 5%). Therefore, it is more difficult to assess changes in
the representation of these cells amongst the HIV-infected pop-
ulation. Indeed, there are conflicting reports about the absolute
numbers of these cells, most of which found no change {72, 133,
134], but some reported an increase [135, 136}, and one report of
a decrease [137]. There appears to be some HIV-infected indi-
viduals who have a selective expansion of a subset of y8 T cells
that are normally very infrequent in uninfected individuals [133,
134].

B cells

In general, the absolute number of B célls in the blood is
decreased [52, 63, 72, 73, 76, 127, 138-140), although some
reports found no change [66, 80, 141} or an increase [54].
Likewise, the percentage of B cells among lymphocytes is un-
changed [51, 138] or is decreased mildly (78, 142]. .

Activation of B cells was one of the first immune dysregulations
noted for HIV disease; it was described in 1983 as a polyclonal B
cell activation [143]. Several observations confirm the activated
state of B cells in HIV-infected individuals, including hypergam-
maglobulinemia, elevated expression of B cell activation markers,
increased frequency of B lymphomas. Phenotypic activation is
evidenced by an increase in the proportion of B cells expressing
CD71 (75, 141} and CD38 [101]. Akin to the T cells, this activation
may not be “classical”, in that the proportion of B cells expressing
CD25 is unchanged [62] or decreased [61]. B cells which have lost
expression of CD62L may also be activated; the proportion of
CD62L "B cells seems to increase {70, 73, 141], although this was
not always observed [54, 139]. Finally, activation of B cells is
evidenced by the increased expression (antigen density) of CD20
[144] and CD21 [145), although the fraction of B cells expressing
CD21 is unchanged in aduits [52, 76] (and decreased in children
(76)). ' _

B cells can be divided into two lineages, the CD5* “B1” cells,
and the CD5™ “B2” cells. The proportion of Bl cells seems to be
increased {72, 139, 140, 142, 146}, although one report found no
difference [147). Interestingly, the increased B1 representation
correlated with hypergammaglobulinemia, autoimmune phenom-
ena, and correlated negatively with total CD4 counts {140]. Since
expression of CDS on Bl cells is relatively weak, differences in
reagents or instrument sensitivity can affect the detection of these
cells and may account for the variations reported. In HIV”
children over two years of age, a fraction of B cells are CD10™
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[t39], and most of these are CD5™; HIV™ adults also had
increased proportions of CD10™ B cells [146] but decreased
CD23" B cells [146]. Finally, the phenotype of the spontaneous
immunoglobulin secreting B cells in the periphery is consistent
with that of “preplasma cells”, that is, CD38* 4F2~ [148].

NK cells

Much less attention has been paid to NK cells than to other
lymphocyte subsets. Early studies on phenotype have artefactual
errors due to the use of markers to identify these cells that are also
expressed on some T cells (CD8, CD16). Likewise, many pheno-
types associated with CD8 T cells are artefactually affected by the
CD8" NK cells. In healthy individuals, the best phenotypic
marker for NXK cells is CD56; however, recent evidence indicates
that the proportion of NK cells expressing CD56 is decreased in
HIV-infected adults [149]. .

On the other hand, the defect in the functionality of NK cells
has been measured for many years [122]). Consistent with the
functional defect, absolute numbers of NK cells are decreased [76,
101, 112, 123, 127, 135, 150], although some groups found no
change [66] or even an increase {80]. The fraction of NK cells
expressing CD8 is more strongly decreased than the CD8~ NK
cells [150], and the fraction of NK cells expressing CD57 may
decline in AIDS [123].

Monocytes

A number of studies have reported changes in monocytes in
HIV-infected individuals, including altered subsets of monocytes
and altered expression of markers. However, there is quite a bit of
disagreement. Some of this disagreement arises from the method
used to identify the monocytes by flow cytometry. These methods
can include simple scatter gates (high forward and orthogonal
scatter), dim CD4 expression, or CD14 expression. Indeed, one
group found a decreased representation of monocytes that were
CDt4™ [151].

The absolute number of monocytes is reported to remain
unchanged (76, 152], or decrease [52, 153, 154]; the percentage of
monocytes among PBMC is unchanged [78, 154] or increased {51].

Expression of HLA-DR on monocytes is necessary for antigen
presentation to CD4 T cells; in HIV-uninfected individuals, most
monocytes express HLA-DR. In view of the CD4 defect noted
earlier, several groups have carefully analyzed the expression of
MHC class II on monocytes. Two reports noted a decrease in the
proportion of monocytes expressing HLA-DR {155, 156]; how-

ever, most reports show no change [52, 76, 153, 157, 158], or an -

increase in the proportion [55, 78, 159]. In addition, the propor-
tion of CD4"HLA-DR™ monocytes increased [55]; however, the
proportion of CD4~ monocytes did not change [55, 157, 158] or
decreased [152, 160]. The amount of HLA-DR expressed per
monocyte was either unchanged [157], or increased [151, 153, 156,
159). It has been suggested that the increase in HLA-DR on

“monocytes (both in percentage and expression) is an adaptive
response to the loss of CD4 T cells.

Other subsets of monocytes change as well. The proportion of
CDi3, CD33, and CD11ib-expressing monocytes all declined in
HIV-infected individuals, and also showed a greater decrease in
HIV-antigen-positive (p24*) individuals compared to p24~ indi-
viduals [151, 158] (one report found no change in the proportion
of CD11b-expressing monocytes [161]). The proportion of mono-

cytes expressing CD25 also increased [159); those expressing

CD71 or CD11c did not change {157). For the Fc receptors, the
proportion of monocytes expressing CD16 remained stable [161]
or increased [151, 154, 162}, and those positive for CD64 in-
creased [163] or remained the same [151, 157, 161]. Finally, no
change in the proportion expressing CD32 was noted [161].

Expression of several markers on the monocytes also changed
with HIV infection, suggesting that these cells may be somewhat
activated. In particular, increased expression (antigen density) of
CDlla [151, 164], CD11b [164}], CD11c [126, 164], CD14 (154],
CD18 [164], and CD64 [163] were all demonstrated. However,
others found no difference in the expression of CDI18 [151] or
CD11b [157]. In addition, there were no changes in the expression
of CD4, CD71, CD32, CD54, and CD16 [151, 157]. Changes in
expression of these molecules on a cell-by-cell basis, when ob-
served, were found even in the absence of a change in the
representation of these populations, indicating that there was an
intrinsic change in the functionality of the monocytes.

Neutrophils

Since most flow cytometric analyses have been performed on
Ficol-processed blood, there is much less information available
about neutrophils. Outside of functional analyses, there have been
a few reports about the phenotype of neutrophils. The absolute
number of neutrophils is decreased [165-167]. The proportion of
neutrophils expressing CD16 (FcR III) is decreased, whereas the
proportion expressing CD32 (FcR II) and CD1lc is unchanged
(168]. CD64 (FcR I)-expressing cells were either unchanged [168]
or slightly increased [163]. Activation of neutrophils was deduced by
the observations of increased expression (antigen density) of CD11b
and CD18 [164, 165], and decreased expression of CD62L [165)].

Why is there so much confusion?

There are several reasons for the confounding results presented
above. These include both methodologic and analytical factors.
We discuss these briefly, showing examples of how they may arise,
and provide potential solutions for each of the problems. Ideally,
by addressing these problems, the extant confusion can be re-
duced significantly, and avoided completely in the future.

1. Unique identification of subsets. Many analyses have relied on
inadequate identification of the subset of interest. A very common
example comes from the study of CD8 T cells. Some NK cells
express low levels of CD8; and therefore, the use of isotype-based
gates to define CD8 cells will include NK cells in the analysis.
Since NK cells express a different complement of surface markers,
this can lead to considerable confusion.

An example of this is given in Figure 182.1. This figure
represents an attempt to determine the representation of naive
and memory subsets within CD8 cells, using three-color flow
cytometry. Since naive/memory determination requires two colors
(CD45RA and CD62L), CD8 T cells must be identified solely on
the basis of expression of CD8 (instead of the superior combina-
tion of CD3 and CD8). The use of a CD8 “anchor gate” that is too
low (for instance, set by the isotype staining controls) thereby
includes NK cells significantly alters the apparent representation
of CD45RA/CD62L subsets.

In HIV disease, the problem of misidentification of subsets is
particularly difficult, since many kinds of cells present at very low
frequencies in healthy HIV™ adults become prevalent in infected
adults. This is true not only in the T cell subsets, but all PBMC
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Bright CD8* Dim CD8*
(Only CD8 T cells) (NK & some CD8 T)

All CD8*
(NK & allCD8 T)

CD45RA

% of Gated Cells
Phenotype | Bright CD8* | All CD8*
Naive RA* 62L* 14.1 19.6
RA* 62L 7.4 21.0
Memory RA™62L* 315 26.9
RA~62L 46.9 324

Fig. 182.1. Inappropriate “anchor gates” for CD8 can affect subset frequen-
cies. The three plots show the distribution of CD45RA and CD62L
expression on cells gated for CD8 expression; this stain was performed on
an HIV-infected adult. The left plot shows the distribution only for cells
which have high CD8 expression (consisting only of CD8 T cells); the
middle plot, for cells which have dim CD8 expression (consisting of both
NK cells and CD8 T cells); the right plot, for all cells which express CD8
above the isotype control (i.e., the combination of the first and second
plots). Since NK cells are predominantly CD45RA* and CD62L ™ (middle
plot). the inclusion of these cells in frequency measurements significantly
affects the representation of naive and memory CD8 T cells. This is
quantitated in the table, which shows the percentage of cells in the plots
for each of the quadrants. While the CD8 T cells are almost 50%
CD45RA™ and CD62L " cells, inclusion of the NK cells in the gate makes
the apparent representation less than 33%. Note that the inclusion of the
NK cells also completely masks the location at which the distinction
between naive and memory CD45RA™ CD8 T cells can be made, making
it impossibie to accurately quantitate naive CD8 T cells.

The plot on the left represents only the bright CD8 cells, which are CD8
T cells (as determined by a parallel stain using CD3 in combination with
CD8). However, this plot necessarily does not include all CD8 T cells—it
excludes those which are dim for CD8. However, the representation of the
CD45RA and CD62L subsets within CD8 can still be determined from this
gate, as a percentage of CD8 T cells—and the absolute number of these
subsets can be determined by multiplying this percentage by the absolute
number of CD8 T cells determined by the CD3-CD8 stain. Of course, the
most accurate method for calculating these cell numbers would be
obtained from’ 4-color stains, using CD3, CD8, CD45RA, and CD62L.

subsets. Indeed, even granulocytes can show alterations in physi-
cal properties such as density, which causes them to co-separate
with PBMC on Ficol gradients.

Another example, which may underlie some of the controversy
regarding CD45RA expression on CD4 T cells, is shown in Figure
182.2. In HIV™ adults, there are very few CD45RA™ memory
cells (i.e., CD62L ™). Thus, CD45RA expression alone is adequate
for distinguishing between naive and memory cells. However,
many HIV-infected adults have significant proportions of
CD45RA*CD62L~ (memory) cells (see middle panels of Fig.
182.2), but essentially no naive T cells. In this individual, CD45RA
alone cannot distinguish naive and memory T cells. In fact, this
individual has a normal representation of CD45RA™ cells
amongst CD4 T cells, but very few naive CD4 T cells. -

There is no easy solution to these problems. First, we must
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recognize that the phenotypes of cells in HIV-infected adults cap
be very different that uninfected adults in unpredictable ways
This means that we cannot necessarily rely on evaluation of H[V-
PBMC as “training” for evaluation of HIV* PBMC. From ap
experimental standpoint, altered phenotypes (and their functionay
correlates) must be confirmed by the use of muitiple markers,
Furthermore, it may be necessary to confirm changes using
different reagents identifying the same marker. For example,
different (brighter) conjugates, different clones used to detect the
same marker. Therefore, three- (or more) color flow cytometry is
essential to the precise determination of changes within subsets,

2. Complexity of antigen expression: antigen density. The expres-
sion of many antigens is relatively simple. They are either absent,
or present at the same level on all expressing cells. This makes
identification of cells expressing the antigen straightforward. How-
ever, the expression of many antigens is considerably more complex
in two ways: there may be a continuum of expression from negative
to positive, or at least a very broad expression pattern; and, the
expression may be different on various subsets within a lineage.

Broad expression patterns are commonly found for antigens
associated with activation, such as CD38 and HIL.LA-DR. Four
examples of the expression pattern of these two antigens on CD4
or CD8 cells is shown in Figure 182.3A. For the most part, there
is no clear delineation between negative and positive for either of
these antigens.

Quantitation of expression of these antigens has been typically
reported by the percentage of cells expressing levels above the
isotype control. However, this suffers from the artefactual contri-
bution of reagent brightness: that is, a very bright reagent (for
example, phycoerythrin conjugates) will reveal more of the dim
cells than would a dull reagent. (This phenomenon is discussed in
detail in Chapter 49 of this Handbook, using CD5 expression on

CD4Tcells CDST cells PBMC

HIV-

A Y
1

10 100 1 10 10
CDé62L

Fig. 182.2. Complexity of antigen expression. The expression of CD45RA
and CD62L on CD4 and CD8 T cells is shown for one uninfected adult
and 2 HIV-infected adults, and on total PBMC for the 'uninfected adult.
Naive T cells are phenotypically defined as those T cells which are
CD45SRA* CD62L* (boxes).
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. Cl?4'l'cells Cl?STcells 50 %tile
- HIV- %pos (Median) Mean 90 %tile
20% 0.35 10.7 50
HIV+
= 20% 0.4 6.0 12
_:; HIV+
10% 0.35 0.9 2
HIV+
0% 0.3 0.4 0.8
: 1 1
01 1 10 100 1000

Fig. 182.3. Quantitating antigen density. (A) Examples of the distribution of CD38 and HLA-DR on CD4 or CDS8 T cells from one HIV ™ healthy aduit
and three HIV™ adults. The distributions are often continuous, with no easily separable positive and negative population. Further, as shown in the
bottom right, the centroid of the population can shift but still be below the isotype control: suggesting that a significant fraction of cells express very
low levels of the antigens. (B) Examples of methods to quantitate the expression. For each hypothetical distribution, the fraction of cells above the
isotype control (dotted line) is given. The position of the median, mean, and 90th percentile of fluorescence is shown by the dark bars and the values
are given in the table. The different distributions illustrate the dependence of these parameters upon the types of distributions obtained.

Each type of measurement illustrated suffers from its own disadvantages; perhaps the most sensitive method to quantitate the expression of these
antigens is by using the 90th percentile of fluorescence. (The mean fluorescence determination can often be biased by a few extremely bright outlying
cells, especially in these logarithmically scaled distributions). .

In cases such as the expression of CD38 and HLA-DR, the distribution is sufficiently complex that it cannot be accurately described by a single
number. Ultimately. it is desirable to compute a small set of parameters which can describe the extent and variability of expression of such antigens.

and to use this set as potential surrogate markers.

B cells as an example). Examples of different methods for
quantitating antigen expression are shown in Figure 182.3B.

3. Complexity of expression: variations among subsets. Again, the
expression of an antigen can be simple, in that all subsets of a
lineage express it to the same degree (for example, CD4 is
expressed equivalently by memory and naive CD4 T cells).
However, underlying variation in antigen expression can lead to
complexities that confuse analysis.

As an example, we show the expression of CD45RA and
CD62L on CD4 and CD8 T cells in Figure 182.2. The complexity

of expression of these antigens makes it impossible to accurately

quantitate naive CD4 and CD8 T cells without using at least two
three-color stains; CD45RA, CD62L, and CD4 or CDS8. Both B
cells and NK cells express CD45RA and CD62L to different
extents than T cells; thus, they contribute variably to the different
subsets. This is evidenced by the distribution shown for PBMC,
and is shown in detail for.NK cells in Figure 182.1.
" Furthermore, the same gates cannot be used for either CD4 or
CD8 T cells. These two different kinds of T cells express signifi-
cantly different amounts of CD45RA. A significant number of
naive CD4 T cells express less CD45RA than do some memory CD8
cells. This implies that naive and memory counts must be determined
independently for each of the CD4 and CD8 lineage cells.
Another complexity is exemplified by the appearance of a new
population of cells (in the middle panel): CD4* CD45RA™
CD62L" cells. These cells are very infrequent in HIV-uninfected

adults, but can represent as high as 75% of CD4 T cells in
HIV-infected adults (averaging over 15% of CD4 T cells). These
cells are activated T cells, in that they express CD38 and HLA-
DR; they also express higher amounts of CD45RA than do the
naive (CD62L") T cells. By “training” on HIV-uninfected adults,
we might decide that CD45RA expression was sufficient to
distinguish naive CD4 T cells and use that marker alone to
enumerate them.

Finally, while there are clearly-defined subsets of T cells based
on the expression of CD45RA and CD62L, they are not “positive”
and “negative”. This is easily seen for CD62L, in that even the
“negative” cells express enough CD62L as to be brighter than
isotype control-stained cells. Therefore, quantitating these subsets
cannot be accurately performed by using gates derived from
isotype controls. Indeed, the best way to compare subset repre-
sentations between different individuals is to use the same anti-
body reagents, prepared at saturating concentrations, for an entire
study: this allows the use of the same gating statistic to be used for
all individuals and reduces the subjective quality of the analysis.
(The use of saturating reagents, a crucial part of any FACS experi-
ment, is discussed in detail in Chapter 49 of this Handbook).

4. Presentation of numerical analyses. A difficulty in comparing
the results from different groups arises when the presentation of
lymphocyte subset representation measurements is as a percent-
age (such as of lymphocytes, or of CD4 T cells, etc.) for one and
as an absolute number for another. Of course, for single sample
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analyses, presentation of absolute numbers only is sufficient to
calculate frequencies, though presentation of frequencies alone
cannot be used to calculate absolute numbers. However, when
analyses for many individuals are grouped, this no longer becomes
possible because the mean average number of CD4 T cells for 100
individuals cannot be divided by the mean average number of
lymphocytes for those individuals to obtain the mean percentage.
The optimal solution is to always present both pieces of informa-
tion in any data presentation.

Summary. In many of the studies that were reviewed here, a
specific question was being addressed and answered. Such a
focused analysis is important in scientific presentations; however,
this focus often excluded data or information which can allow
comparison across analyses. In other words, it becomes nearly
impossible to reconcile differences between manuscripts, because
we cannot ascertain if the discrepancy arose from reagents (such
as one group used a very bright reagent, the other a dull reagent),
from methodology, or from more complex underlying aspects such
as differences between study populations.

There are no perfect solutions to these problems, as noted
above. However, we should strive to present “control” data-in
other words, any new analysis such as the presentation of a novel
surrogate marker, should include sufficient additional analyses as
to make the presentation comparable to current literature. This is
most important in antigen density measurements, where a great
deal of variation can arise from instrumentation, reagent choice,
staining protocols, and so forth.

As an example, consider an hypothetical study that measures
the antigen density of “CD999” on CD8 T cells in HIV-infected
adults, and its correlation with disease progression. At a mini-
mum, such a study should endeavor to include antigen density
measurements of CD38 on CD8 T cells-and, optimally, using the
same fluor on the two antibodies (i.e., if PE CD999 is used, then
the antigen density as revealed by PE CD38 should also be
measured). In this study, the antigen density of CD38, known to
increase during HIV progression, would serve as a “normaliza-
tion” value for comparison between studies. Indeed, any publica-
tion of novel immunophenotyping studies should provide an
appropriate analysis of previously-published data that can serve in
this regard. .

Perhaps the most important lesson to be learned from the
plethora of conflicting data is that single-color analyses are no
longer adequate for immunophenotyping studies. Even two-color
analyses have become inadequate for resolving the fine subpopu-
lations that are now of interest. Three-color analyses have now
become routine in many laboratories; four- to six-color analyses
will likewise become routine in the next ten years. This increased
power is not without its cost: the complexity of analyses increases
geometrically with the number of independent measurements.
Routine multicolor experiments will require a strong commitment
on the part of the flow cytometry manufacturers to produce and
actively support easy-to-use instrumentation coupled with power-
ful analysis software, as well as the reagent manufacturers to
provide well-controlled, high-quality conjugates of monoclonal
antibodies.
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