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Background: Comparing distributions of data is an im-
portant goal in many applications. For example, determin-
ing whether two samples (e.g., a control and test sample)
are statistically significantly different is useful to detect a
response, or to provide feedback regarding instrument
stability by detecting when collected data varies signifi-
cantly over time.
Methods: We apply a variant of the chi-squared statistic to
comparing univariate distributions. In this variant, a con-
trol distribution is divided such that an equal number of
events fall into each of the divisions, or bins. This ap-
proach is thereby a mini-max algorithm, in that it mini-
mizes the maximum expected variance for the control
distribution. The control-derived bins are then applied to
test sample distributions, and a normalized chi-squared
value is computed. We term this algorithm Probability
Binning.
Results: Using a Monte-Carlo simulation, we determined
the distribution of chi-squared values obtained by compar-
ing sets of events derived from the same distribution.
Based on this distribution, we derive a conversion of any
given chi-squared value into a metric that is analogous to

a t-score, i.e., it can be used to estimate the probability
that a test distribution is different from a control distribu-
tion. We demonstrate that this metric scales with the
difference between two distributions, and can be used to
rank samples according to similarity to a control. Finally,
we demonstrate the applicability of this metric to ranking
immunophenotyping distributions to suggest that it in-
deed can be used to objectively determine the relative
distance of distributions compared to a single control.
Conclusion: Probability Binning, as shown here, pro-
vides a useful metric for determining the probability that
two or more flow cytometric data distributions are differ-
ent. This metric can also be used to rank distributions to
identify which are most similar or dissimilar. In addition,
the algorithm can be used to quantitate contamination of
even highly-overlapping populations. Finally, as demon-
strated in an accompanying paper, Probability Binning can
be used to gate on events that represent significantly
different subsets from a control sample. Cytometry 45:
37–46, 2001. Published 2001 Wiley-Liss, Inc.†
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Comparing univariate distributions is a common task in
the analysis of flow cytometric data. Such comparisons are
useful for quality control (during or after sample acquisi-
tion) to ensure that sample measurements, particularly
light scatter, are not drifting due to undetected changes in
the fluidics (particularly, nozzle clogs), excitation inten-
sity, or other instrument components. Automated compar-
isons that are nonparametric and do not require user
intervention would be particularly well-suited for such
feedback.

Comparison of distributions is also useful for analyzing
biological responses. For example, examination of a
marker of activation to determine the fraction of respond-
ing cells (and the extent to which they respond) is often
used to quantify immune activation, cellular responses to
stimulation, etc. The principal problem with such assays is
that the distribution of responding cells often overlaps

significantly with the nonresponding cells, making it dif-
ficult to determine quantitative measures of the response.

Several algorithms are currently in use to address these
problems. The first described nonparametric test for flow
cytometric data was based on Bayes’ theorem applied to
channel-by-channel determination of means and standard
deviations (1). Bagwell has since developed a much more
sophisticated comparison algorithm, now termed “SED”
(2). The Kolmogorov-Smirnoff (K-S) statistic provides a
probability that two flow cytometric univariate histograms
are different (3, 4). However, the K-S statistic has a signif-
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icant drawback, including that while it likely underesti-
mates the probability with which discrete data sets (such
as flow histograms) are unique, it is far too sensitive to
provide meaningful values (5). For example, even collect-
ing histograms for the same cells twice in succession often
results in distributions that are statistically significantly
different.

Cox applied a chi-square statistic to compare histo-
grams (5). In this algorithm, the number of events in any
given bin is used to calculate a channel-by-channel confi-
dence interval. The difference between two distributions
is essentially normalized by these confidence intervals to
determine where the variation is greater than expected.
This method works well when large numbers of events
(relative to the number of bins into which each histogram
is divided) are available; with more limited event num-
bers, the predicted variation for any given channel be-
comes very large. The authors noted that the number of
events per channel should be at least 20. Nonetheless, the
expected variance is highly variable across a distribution,
meaning that the statistic is weighted towards those por-
tions of the distribution containing more events—making
it less sensitive to changes in outlier populations if the
bulk of the data is unchanged.

Neither the K-S probability nor the chi-square statistics
provide a measure of the percent positive cells, i.e., those
above the control. Overton published an algorithm that
essentially subtracts histograms on a channel-by-channel
basis (6). This algorithm accurately quantitates responding
populations; the accuracy depends on the frequency of
responders as well as the separation between the distri-
butions of responders and non-responders. The Overton
algorithm does not provide an estimate of the probability
with which the distributions are distinct.

Finally, Lampariello developed a parametric statistic for
determining percent positive cells based on a model of the
distribution of cellular autofluorescence (7, 8). This
method is distinct from the others in that it is parametric,
i.e., it fits an expected distribution to the control (un-
stained) sample. It is useful only when the control sample
is indeed unstained, and cannot be used as a general
method for comparing any distributions.

We developed a novel algorithm for the comparison of
distributions, which we term Probability Binning (PB)
Comparison. The PB comparison is a related to the Cox
chi-square approach, but with modified binning such that
it minimizes the maximal expected variance. In an accom-
panying manuscript (9), we extend PB comparison algo-
rithm to compare multivariate data. In this manuscript, we
describe the application of the algorithm to univariate
data, and show that it not only detects small differences
between histograms, it does so in a quantitative way. This
means that the algorithm can be used to rank distributions
in terms of how similar they are to a control. The output
of the algorithm, a single value, can be used to determine
the statistical significance of the difference between dis-
tributions, to estimate the relative distance between the
distributions, and can even be used to estimate the repre-
sentation of a highly overlapping populations within a test

sample, irrespective of the actual distributions of the two
populations.

MATERIALS AND METHODS
Data Analysis

Artificial univariate distributions were created as FCS
files using a specially modified version of FlowJo (Tree
Star, San Carlos, CA). Distribution comparisons, including
Probability Binning, Kolmogorov-Smirnoff (4), Overton
cumulative subtraction (6), and SED (2), were performed
using the standard FlowJo version 3.4; additional analyses
were performed using JMP for Macintosh (SAS Institute).

Cell Staining and Flow Cytometric Analyses

Human PBMC were obtained by standard methods; at
least 106 cells were used for each stain. Cells were stained
on ice for 15 min with fluorescently-conjugated antibodies
and then washed three times with staining medium (bi-
otin, flavin-deficient RPMI supplemented with 4% new-
born calf serum and 0.02% sodium azide). Data were
collected on a FACStarPlus (Becton Dickinson, San Jose,
CA).

RESULTS
Probability Binning Algorithm

To compare different distributions, we took the ap-
proach of binning the distributions–i.e., dividing the dis-
tributions into a relatively small number of bins. The
number of events falling into these bins is compared for a
test and control sample, and a chi-squared computation is
performed on the counts (i.e., the square of the differ-
ences divided by the sum). Rather than the standard bin-
ning algorithm, which selects bins of equal width, our
binning algorithm selects bins such that each bin contains
the same number of events. The result of this algorithm is
that a randomly-selected event from the control sample
has an equal probability of falling into any of the bins. This
process results in bins of unequal width (Fig. 1), with the
property that each bin carries equal weighting when used
for further statistical tests. Importantly, this process min-
imizes the maximum expected variance for the bins. We
refer to this process as PB.

In order to compare a test distribution, the number of
events for that test distribution that fall into each of the
bins generated from the control is calculated. It is appar-
ent that the total number of bins, B, into which the
control distribution is divided should affect the compari-
son. For example, if B 5 1, then no distributions would be
different; higher values of B are predicted to resolve dis-
tributions with greater fidelity. The number of events that
falls into bin i for the control sample is ci and for the test
sample, si. Given that the total number of events in the
control sample is Ec and the test sample is Es, we define
the normalized bin counts as:

c9i 5
ci

Ec and s9i 5
si

E s
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Thus, si is the fraction of the total events in the test sample
that fall within bin i.

We then define a normalized x2 value (x92):

x92 5 O
i51

B
~c9i 2 s9i!

2

~c9i 1 s9i!

Theoretically, x92 can range in values from a minimum of
zero to a maximum of 2, irrespective of the number of
events in the test or control samples.

Derivation of the PB Metric

When comparing two sets of values derived from the
same distribution, x92 will in general be greater than zero

FIG. 1. Probability Binning. Shown are two examples of univariate distributions of putative control samples. Each distribution is divided into ten bins,
containing equal numbers of cells. The first bin ranges from the lowest possible value up to the point where 10% of the events in the control sample have
been included. The second bin ranges from the 10th to the 20th percentiles, and so forth. Thus, if an event is taken at random from this distribution, it has
an equal probability of falling within any of the ten bins. Note that the bins are much narrower around high density clusters (i.e., where there is
considerably more information per unit intensity), and much wider where events are much more disperse (and correspondingly lower information density
per unit intensity).

FIG. 2. Dependence of the minimum observed x92 (see Results) on binning and event counts. Data files were generated containing events randomly
generated from the same original distribution; each file had between 100 and 106 events. For each data point in the graphs above, 1000 files were
generated; the first was compared against all others. The distribution of x92 for each of these 999 comparisons was roughly Gaussian; plotted above is the
mean and standard deviation (s) of the x92 values vs. event count (left) where each distribution was divided into 25 bins, or vs. bin count (right) for
distributions with 30,000 events.
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due to random variation (sampling error). We determined
what distribution of x92 results for comparing identical
distributions, in order to empirically derive the minimum
statistically significant value of x92 (i.e., the minimum
value from which a confident decision of histogram dif-
ference can be made). To do this, we generated seven sets
of 1,000 FCS data files; each set had the same number of
events, ranging from 100 to 106 per file. The value for
each event was generated using a pseudo-random number
generator that creates normal (Gaussian) distributions
(10).

Each set of data files was then subjected to the PB using
either 10, 20, 25, or 50 bins, and the mean and standard
deviation of 1,000x92 values was calculated. The resulting
x92 distributions for each case were nearly normally-dis-
tributed (data not shown), making the standard deviation
of the distribution an appropriate measure of the variance
of x92.

The results of these analyses are summarized in Figure
2. We found that the mean x92 for a comparison of events
with the same distribution (mean minimum observed x92,
or x92) was proportional to the number of bins and in-
versely proportional to the number of events. In addition,
we found that the standard deviation of the distribution of
x92, sx’2, was inversely proportional to the number of
events and inversely proportional to the square root of the
number of bins.

By least-squares multivariate modelling to the 28 mea-
sured values of the mean minimum observed x92 and their
corresponding standard deviations, we determined the
constants of proportionality to derive equations to predict
the distribution of x92 based only on the number of bins
used in the PB algorithm and the number of events E
(where E is the lesser of Es and Ec):

x92 5
B

E

sx92 5
ÎB

E

The value x92 is the minimum potentially meaningful value
for a comparison. In other words, this is the value that is
obtained for comparing equivalent data sets; any x92 equal
to or less than this indicates that the two compared data
sets have the same distribution.

Because the distribution of the PB x92 for comparison of
equivalent sets of data is normal, we can define a metric
that is analogous to the t-score for any measured x92

m. This
relates to the significance of the value of x92

m. Values less
than zero are set to zero, since they cannot arise from
statistically-different distributions.

T~x! 5 maxS0,
~x9m

2 2 x92!

sx92
D

Given xm92, this metric, T(x), is the number of standard
deviations above the minimum meaningful value for that
comparison. Therefore, a value T(x) 5 0 implies that the
two distributions are indistinguishable (p 5 0.5); a value
T(x) 5 1 means that xm92 is one standard deviation above
the minimum value and that the two distributions are the
same with a probability p , 0.17. A value T(x) . 4
implies that the two distributions are the same with a
p , 0.01 (i.e., 99% confidence that the distributions are
different).

Validation of the PB Metric

In order to validate the metric T(x), we generated an-
other series of data files. In this series, we added a varying
number of positive events to the negative distribution,
where the positive events were also distributed normally
but with a mean that ranged anywhere from 0.1 to 4.0
standard deviations above the negative events. These bi-
modal distributions were compared against a file contain-
ing only the negative distribution. As for Figure 2, the
number of events and number of PB bins used in the
statistic was also varied to determine the influence of
these values on T(x).

Shown in Figure 3 is the dependence of T(x) on the
fraction (% positive) and separation (DPeak) of the events
in the test distribution. (See Fig. 4 for examples of these
distributions). T(x) scales monotonically and smoothly
with both the fraction of positive events as well as the
separation between the positive and negative events.
Once the separation is such that there is no more overlap
between the positive and negative events (i.e., more than
two standard deviations apart), T(x) no longer increases
with increasing separation. This is expected, because the
T(x) does not depend on the shape of the distribution
(i.e., is nonparametric with regard to the distribution of
events).

Therefore, T(x) is a statistic which not only provides an
indication of the probability with which two distributions
are different, but simultaneously provides a metric by
which multiple distributions can be ranked. The higher
the value of T(x), the less like the control sample.

A thorough analysis of the dependence of T(x) on the
total number of events, the number of PB bins (B) used,
the representation of positive events, and the distance
between the positive and negative peaks is shown in
Figure 4. These contour plots illustrate several features
about the T(x) metric. First, the minimum number of
positive events for a well-separated (.2s) population that
results in a T(x) value with a 99% confidence of difference
(i.e., T(x) . 4), is about 100 (when B 5 25). Interestingly,
this minimum detectable event count does not depend on
the number of negative events. Therefore, the algorithm
can detect 100 events out of 104 (1% positive) with the
same precision as 100 events out of 106 (0.01% positive).
Second, the minimum number of detectable positive
events depends only slightly on the bin count B. Higher
values of B can detect lower % positives. (However, be-
cause x’2, the minimum statistically significant value, is
proportional to B, it is possible that increasing the number
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of bins too high will lead to a decrease in the resolving
power). Third, as expected, the less the separation be-
tween the positive and negative events, the greater the %
positive must be in order for the algorithm to detect the
presence of the positive events. The black curve on the
main contour plot in Figure 4 illustrates the boundary
between indistinguishable and distinguishable distribu-
tions. For example, if the difference between a positive
and negative population is only 0.25 standard deviations,
then the algorithm requires 1000 positive events (irre-
spective of the number of negative events!) to generate a
statistically significant value.

Application of the PB Metric to
Immunofluorescence Data

We next applied this algorithm to immunofluorescence
and light scatter data collected on by flow cytometry. While
two immunofluorescence (or light scatter) distributions may
be statistically significantly different by algorithms (including
the PB comparison), we wished to determine if the PB
comparison could still be used to rank distributions. The goal

is to determine the minimum value of T(x) that has biolog-
ical significance. Certainly, this minimum value would be
different depending on the nature of the data being analyzed
and needs to be determined empirically.

Our test data was derived from a three-color immuno-
fluorescence analysis of PBMC from 18 individuals (7
HIV1, 11 HIV-), four collected on one day, and 14 on
another day. A panel of six different three-color stains was
collected on each individual; data from 30,000 PBMC was
stored. For the analyses in Figures 5 and 6, data was first
gated on forward and side scatter for lymphocytes; only
the data for lymphocytes was included in the PB compar-
ison. In this case, a single tube from an HIV– sample served
as the control tube for PB comparison.

Figure 5 illustrates that even gated Side Scatter distribu-
tions (which have very low variance) still yield informa-
tion when compared by PB. The six side scatter distribu-
tions derived from the same individual are much more
closely related than the distributions from other individu-
als. Interestingly, four of the five HIV1 individuals had the
greatest difference from the HIV- control.

FIG. 3. T(x) as a metric to quantitate differences in univariate distributions. Data files were generated containing events randomly selected from two
different Gaussian distributions, one a control distribution, the second a positive distribution centered above the control distribution by a distance
measured in units of standard deviations (each Gaussian had the same width 5 1s). Each data file had a defined proportion of positive events. Each point
represents the T(x) calculated from a comparison of such a data file with a control distribution (0% positive). (Upper panels) T(x) vs. % positive, where
the positive distribution is nearly overlapping the control (the distributions are only 0.1s apart), slightly overlapping (1s), and nearly non-overlapping (2s).
Insets show graph at lower values. Note that T(x) varies monotonically and smoothly with increasing proportions of positive events, although for lower
separation, greater numbers of events are required to achieve statistical significance. (Lower panels) T(x) vs. the inter-peak distance for distributions with
1% or 10% positive events. With one 1% positive, T(x) becomes statistically significant only when positive events are at least 0.5s above the control; at
10%, T(x) is significant event when the peaks are separated by only 0.1s.
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Figure 5 also illustrates the dependence of the metric on
the representation of a well-resolved population (in this
case, CD8 expression on lymphocytes). As expected from
Figure 3, T(x) increases as the percentage of CD8 T cells
among lymphocytes moves away (either higher or lower)
from the control sample’s percentage.

Perhaps the most important reason for using a statistic
to compare univariate distributions is to determine
whether or not highly overlapping distributions are differ-
ent. Giorgi and colleagues (11) have shown that the ex-
pression of CD38 on CD8 T cells is a powerful predictor
of subsequent progression of HIV disease. However, CD38
expression is continuous from negative to positive, and
often only a fraction of the cells express it. Typically, the
extent of CD38 expression is quantified by the mean (or
median) CD38 fluorescence intensity of the cells. Because
of the low and variable expression of CD38, we used it as
a test for the PB comparison.

Figure 6 illustrates that the T(x) values for these com-
parisons can distinguish those subjects with a significant

expression of CD38. Indeed, for these comparisons, the
value of T(x) is proportional to the median CD38 expres-
sion, confirming the analyses of Figures 2-4 that the T(x)
metric scales with the degree of difference of univariate
distributions. In addition, Figure 6 illustrates that selecting
a minimum value of 4 for T(x) (i.e., 4 standard deviations
above noise, or a p value . 99%) is a reasonable criterion
for asserting that two distributions are indeed different.

Using the PB Metric to Quantify Representation of
an Unresolved Population

The smooth and monotonic dependence of T(x) on the
fraction of a contaminating population (Fig. 3) suggests
that T(x) could be used not just to quantitate distribution
differences but to estimate the fraction of a poorly-re-
solved contaminating population. (Fig. 5 shows that it can
be used to estimate the fraction of a well-resolved popu-
lation, CD8 T cells, based on the univariate CD8 histo-
gram). To test this hypothesis, we compared the fre-
quency of monocytes within PBMC (a known value based

FIG. 4. Detailed analysis of the dependence of T(x) on the separation and proportion of a positive population. For each contour plot, 1,800 data files
were generated and compared to the control distribution. Each data file had a different proportion (0.01 to 90%) of a positive population that was centered
above the control population from between 0.1 and 4.0 standard deviations of the control distribution. The histograms across the bottom show examples
of the control distribution, followed by the distributions (black) containing equal mixtures (50%) of control (red) and positive (blue) events separated by
different distances. The 1,800 T(x) values were contoured and colored according to the magnitude of T(x) (first panel, inset). Since a T(x) of greater than
four is associated with a .99% probability that the distribution is different than the control, this value is taken as the threshold for statistical significance.
The curved black line in the large contour plot is drawn approximately along this threshold; thus, distributions to the left of this line are not statistically
significantly different from the control distribution; to the right, they are. The analysis was repeated for four other combinations of event counts and
binning; the curved black lines in the smaller graphs are position at the same location as for the 30,000 event/25 bin analysis for comparison. The vertical
arrows point to the minimum detectable positive event count for distributions that are non-overlapping: note that this value is nearly 100 positive events,
irrespective of the number of events in the total population.
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on CD14 staining) with the T(x) obtained by comparing
the Forward Scatter distributions for total PBMC with a
Forward Scatter distribution for a pure lymphocyte pop-
ulation (Fig. 7). These analyses demonstrate that the T(x)
metric can indeed be used to quantitate a contaminating
population, even when the distribution of that population
overlaps significantly with the control (although a three to
five point calibration curve will be necessary to effect
such quantitation accurately).

For distributions where the contaminating population
in a test distribution was to the right (greater fluores-
cence) than the test sample, the PB metric, K-S statistic,
SED value, and Overton methods performed equally well
(Fig. 8). In fact, the minimum detectable difference in
these distributions occurred at the same threshold of con-
tamination. As shown here, all of these statistics have a
threshold for significance that is based on the absolute
number of contaminating cells, rather than a percentage

of the events. This is contrary to what was previously
published for K-S (12); the difference may be due to the
much larger sampling of distributions performed in our
analysis compared to the previously published analysis
(several thousand vs. five).

DISCUSSION
Many have pointed out the caveats to performing sta-

tistics to compare univariate binned data such as that from
flow cytometry. Nonetheless, there is a great need for
such comparisons, for both quality control during (or
after) sample acquisition, and for identifying outlying sam-
ples based on the measurement of a single response.

A few methods have been applied to this problem. The
most successful for quantitating responsiveness is the
Overton cumulative histogram subtraction. This algorithm
predicts % positive quite well, given sufficient positive
events and/or sufficient separation of the positive and

FIG. 5. Evaluation of T(x) in clinical specimens. (Top) PBMC from 14 individuals (13 are HIV1) were stained with six different panels of antibodies and
analyzed on the same day. Lymphocytes were gated by forward and side scatter (SS); the side scatter distribution of the lymphocytes was compared to the
HIV- control (#14). Because the distributions were already gated for side scatter, there is limitation on the variation that could be encountered. For each
of the six samples from each patient, the T(x) distribution for SS is shown (mean 6 1s).
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negative. The PB algorithm performed no better than the
Overton method at enumerating positive events above a
control distribution (Fig. 7). However, the Overton
method does not provide an indication of the probability
with which two distributions are different (i.e., a proba-
bility to assign the percent positive calculation); nor does
it provide confidence intervals.

Lampariello developed a parametric statistic for deter-
mining percent positive cells based on a model of the
distribution of cellular autofluorescence (7, 8). This statis-
tic is expected to perform extremely well (is highly sen-
sitive to small proportions of negative populations) under
the conditions for which it was designed—use of un-
stained control samples. However, it will fail should the
control distribution not fit the model of autofluorescence
distribution–for example, when comparing distributions
where the control sample has stained cells. In addition,
the model depends on accurate autofluorescence model-
ing, which is not possible when significant fluorescence
compensation is necessary because of the significant
broadening of the distribution (13).

The K-S statistic can sensitively detect statistically sig-
nificant differences between distributions. However, the
p value on the K-S statistic is not a metric; it has not been
demonstrated that smaller p values correspond to distri-
butions that are less like the control. Additionally, it has
been demonstrated that K-S underestimates the differ-
ence of discrete (binned) distributions such those from
flow cytometry.

The PB comparison is as sensitive as the K-S to detecting
statistically significant differences (Fig. 8). However, the
PB comparison provides a metric, T(x), which can be
used to quantitate differences between distributions.
Therefore, for any given data set (or type of data), a
biologically-meaningful minimum T(x) can be empirically
determined. Only histograms which have T(x) values
larger than this empirical minimum can then be consid-
ered to be different.

While the PB comparison works well with univariate
distributions, the original impetus for its development was
the comparison of multivariate distributions. No other
statistical test has been applied to two- or more parameter
flow cytometric distributions. As described in Roederer et
al. (9), the PB comparison statistics as derived here work
well to identify differences in multiparametric distribu-
tions. Thus, the PB comparison can serve as a general
solution for the comparison of flow cytometric data, ei-
ther as quality control feedback or to measure biological
differences, irrespective of the number of parameters that
may vary.

One difficulty in performing these types of analyses
(especially, population distance metrics) is identifying a
suitable control population. One approach to this prob-
lem is to combine all samples to be compared into a single
concatenated control population, or, alternatively, to
specify a set of control populations to be combined.
Probability binning is then performed on this combined
dataset. Each individual sample is then compared against

FIG. 6. Discrimination of CD38 expression profiles on CD8 T cells. PBMC from 14 individuals were stained to evaluate CD38 expression on T cells.
(Right) Histograms for three HIV1 individuals (black) are compared to the HIV- (blue) control. The T(x) value for each comparison is shown in the corner.
The K-S statistic was also calculated on these distributions; it gave a statistical significance of .99.9% for all three, whereas the T(x) of 2.4 is not considered
significant for the last histogram. (Left) The T(x) value for the comparison is plotted against median CD38 expression. Note that the statistic scales linearly
with increasing median intensity of the sample distributions.
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this combined dataset in order to provide a metric that is
the distance from the average of the populations. This
method can alleviate the problem of identifying a suitable
control population. The utility of such averaging will be
greatest in comparing real-life samples, wherein sample-
to-sample variation amongst the controls could lead to an
over-estimation of differences should an atypical sample
be used for a control.

Finally, one of the powers of Probability Binning is
that the algorithm can be used to identify which parts

of a (multivariate) distribution are different from a con-
trol sample: i.e., it can generate a gate comprising of the
events which are different in the sample compared to a
control. This is explored in detail in Roederer et al.
(14). As such, it is relevant to note that Overton’s (6),
Bagwell’s (2), and Lampariello’s (8, 12) statistics are all
tuned to identifying contaminating populations that
have a greater fluorescence distribution than the con-
trol (i.e., positives). The PB algorithm can identify con-
taminating populations no matter where the occur rel-

FIG. 7. PB Statistics accurately estimate contaminating population frequencies. (Top Left): Forward scatter vs. CD14 for PBMC. Monocytes are defined
as CD141; Lymphocytes as CD14-. (Top Right): Histograms of Forward Scatter for total PBMC (black), CD14– Lymphocytes (red), and CD141 Monocytes
(blue). The red and blue histograms were scaled to equal heights; in this sample, the Monocytes comprise 30% of the PBMC. (Bottom left): The Forward
Scatter histograms for 14 samples collected on the same day. The overlap between the Monocytes and Lymphocytes precludes accurate estimation of
Monocyte representation based solely by gating on Forward Scatter. (Bottom right): The PBMC Forward Scatter distribution was compared to a single CD14-

pure lymphocyte population from one sample. The resulting T(x) values are plotted against the known Monocyte representation (based on CD14 staining).
The highly-correlated linear relationship demonstrates that the T(x) can be used to quantitate the representation of Monocytes among PBMC based solely
on the Forward Scatter histograms and a representative Forward Scatter distribution of pure Lymphocytes. By extension, T(x) could be used to estimate
the representation of highly overlapping contaminating cells for any parameter, given a pure control histogram of that parameter.
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ative to the control distribution– even within a complex
distribution.

In summary, Probability Binning is a novel statistic for
comparing distributions of event data. It has several ad-
vantages over existing algorithms, in that it provides a
reasonable probability (and confidence interval) of two
distributions being different, it can be used to determine
the percent contamination by an second population of
events, and, unlike any other metric, it can be used to rank
differences between test samples to identify those most or
least like the control sample. Most importantly, however,
the Probability Binning algorithm can be applied to data
comprising any number of distinct parameters.
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FIG. 8. Comparison of various univariate
analysis methods. Distributions selected from
Figures 3 and 4 were used to compare the
statistical methods PB (described here), Kol-
mogorov-Smirnoff D-value (4), Overton’s
modified histogram subtraction (6), and Bag-
well’s SED method (2). For this purpose, we
compared distributions that had varying frac-
tions of positive cells (% positive) out of
30,000 events to a distribution that had no
positive cells. The positive cells were sepa-
rated by 2s from the negatives (i.e., well-
separated). The methods also performed
nearly identically for distributions that were
highly overlapping distributions separated by
only 0.06s (data not shown). Each data point
shows the value for one test distribution
comparison. The vertical light gray line indi-
cates the minimum fraction of cells that is
accurately identifiable by the methods. The
highly close agreement of these methods is
expected for these test distributions, and in-
dicates that all provide roughly the same in-
formation. However, the SED and Overton
methods are specifically designed to identify
positive cells, i.e., cells to the right of control
distribution, and do not accurately identify
contaminating populations if their distribu-
tion is not to the right of the control. The PB
method can identify a contaminating popula-
tion no matter where in the distribution it
occurs: to the left, within, or to the right.

46 ROEDERER ET AL.


	MATERIALS AND METHODS
	RESULTS
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	DISCUSSION
	FIG. 6.
	FIG. 7.
	FIG. 8.

	ACKNOWLEDGMENTS
	LITERATURE CITED

