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Background: While several algorithms for the compar-
ison of univariate distributions arising from flow cyto-
metric analyses have been developed and studied for
many years, algorithms for comparing multivariate dis-
tributions remain elusive. Such algorithms could be
useful for comparing differences between samples
based on several independent measurements, rather
than differences based on any single measurement. It is
conceivable that distributions could be completely dis-
tinct in multivariate space, but unresolvable in any
combination of univariate histograms. Multivariate com-
parisons could also be useful for providing feedback
about instrument stability, when only subtle changes in
measurements are occurring.
Methods: We apply a variant of Probability Binning, de-
scribed in the accompanying article, to multidimensional
data. In this approach, hyper-rectangles of n dimensions
(where n is the number of measurements being com-
pared) comprise the bins used for the chi-squared statistic.
These hyper-dimensional bins are constructed such that
the control sample has the same number of events in each
bin; the bins are then applied to the test samples for
chi-squared calculations.
Results: Using a Monte-Carlo simulation, we determined
the distribution of chi-squared values obtained by compar-
ing sets of events from the same distribution; this distri-

bution of chi-squared values was identical as for the uni-
variate algorithm. Hence, the same formulae can be used
to construct a metric, analogous to a t-score, that estimates
the probability with which distributions are distinct. As
for univariate comparisons, this metric scales with the
difference between two distributions, and can be used to
rank samples according to similarity to a control. We
apply the algorithm to multivariate immunophenotyping
data, and demonstrate that it can be used to discriminate
distinct samples and to rank samples according to a bio-
logically-meaningful difference.
Conclusion: Probability binning, as shown here, pro-
vides a useful metric for determining the probability with
which two or more multivariate distributions represent
distinct sets of data. The metric can be used to identify the
similarity or dissimilarity of samples. Finally, as demon-
strated in the accompanying paper, the algorithm can be
used to gate on events in one sample that are different
from a control sample, even if those events cannot be
distinguished on the basis of any combination of univari-
ate or bivariate displays. Cytometry 45:47–55, 2001.
Published 2001 Wiley-Liss, Inc.†

Key words: flow cytometry; data analysis; K-S statistics;
histogram comparisons

A significant power of flow cytometric analysis is the
collection of highly complex, multivariate data for each of
thousands or millions of events for any given sample.
However, the utilization of the information present in
such data is typically limited by analysis tools that can
operate on one or two dimensions at a time. For example,
currently algorithms to compare distributions (such as
Kolmogorov-Smirnoff (K-S) statistics (1, 2), Overton sub-
traction (3), SED (4), and even parametric models (5, 6))
are limited to univariate data. The utility of these types of
algorithms is in their ability to determine whether or not
given distributions are (statistically significantly) different,

and/or to determine the fraction of events that are positive
compared to a control distribution.

The ability to compare multivariate distributions could
be important for a number of applications.
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(1) Identification of biological response. It is pos-
sible that biological response to stimulation or other in-
teraction might be identified only based on the combined
measurement of several parameters simultaneously. Ge-
netic programs that modulate gene expression often affect
multiple genes in concert; however, the change in any
given gene expression may not be unique to a particular
experimental condition. Thus, the simultaneous evalua-
tion of multiple response variables may be necessary for
precise identification of an interaction.

(2) Identification of outlier events. Algorithms com-
paring univariate distributions can be used to quantitate
the percent of events above a control sample (e.g., Over-
ton histogram subtraction, Bagwell’s SED algorithm (4), or
Lampariello’s parametric models (5, 6)). However, it is
conceivable that outlying events cannot be distinguished
solely on the basis of a single parameter, nor may they
occur with fluorescences greater than the control; thus,
these could not be accurately enumerated by these uni-
variate approaches.

(3) Quality control feedback. Multivariate compari-
sons of data collected over time could identify subtle
changes in the distribution of what should be identical
distributions. For example, many cytometer operators rec-
ognize the importance of monitoring forward and side-
scatter distributions while collecting cell samples, and
implicitly believe that monitoring the bivariate display of
forward and side-scattered light signals is much more
informative than monitoring two univariate displays of
each signal separately.

In addition, as the dimensionality of flow cytometric
data increases, the demand for multivariate algorithms
becomes more acute. While it is often sufficient to use
univariate tools on 3- or 4-parameter data (because of the
relative independence of the measurements), it is almost
never sufficient when the number of parameters is greater
than five or six. Because the complexity of the data (and
the analysis) increases geometrically with the number of
parameters, the difficulties become significant hurdles to
data analysis as we migrate to routine six or more color
analysis (i.e., 81 parameter data).

In an accompanying paper (7), we describe a variation
of a chi-squared statistic, termed Probability Binning (PB),
that can be used to rank univariate distributions in a
statistically meaningful way. In this manuscript, we de-
scribe how to extend this algorithm to multivariate data.
We show that the PB algorithm behaves predictably to
quantitate differences between highly artificial datasets.
We then apply the PB metric to three- or four-color im-
munofluorescence data to demonstrate that the PB metric
can be used to objectively and quantitatively rank multi-
variate distributions in a way that is biologically meaning-
ful.

MATERIALS AND METHODS
Data Analysis

Artificial multivariate distributions were created as FCS
files using a specially modified version of FlowJo. Distri-

bution comparisons were performed using FlowJo version
3.3 (Tree Star, San Carlos, CA); additional analysis was
performed using JMP for Macintosh (SAS Institute).

Cell Staining and Flow Cytometric Analyses

Human PBMC and mouse lymphocytes were obtained
by standard methods; at least 106 cells were used for each
stain. Cells were stained on ice for 15 min with fluores-
cently-conjugated antibodies and then washed three times
with staining medium (biotin, flavin-deficient RPMI sup-
plemented with 4% newborn calf serum and 0.02% so-
dium azide). Data were collected on a FACStarPlus (Bec-
ton Dickinson, San Jose, CA).

RESULTS
Multivariate Probability Binning Algorithm

In order to carry out Probability Binning Comparison,
multivariate data must first be divided into bins containing
the same number of events. Thus, when binning 10,000
events into 100 bins, each bin must contain 100 events.
This necessitates that the bins are of different sizes. We
chose an algorithm that successively divides a multivariate
dataset into bins such that each bin has the same number
of events (Fig. 1). The algorithm begins by calculating the
median and variance of all of the data, for each of the pa-
rameters included in the comparison. It chooses the pa-
rameter with the largest variance, and divides the events
in half based on the median value of that parameter. By
choosing the parameter with the largest variance, the
algorithm is weighted towards assigning distinct clusters
of events into distinct bins (or sets of bins).

The algorithm then repeats the process on each of the
two newly-defined subsets, again determining the median
and variance of all parameters for each subset. This two-
fold division process continues until some specific thresh-
old is met (see below). The result is a series of n-dimen-
sional hyper-rectangular bins. When the original control
sample is separated into these bins, each bin has roughly
the same number of events. Therefore, when selecting an
event at random from the control population, there is an
equal probability that it will fall into any given bin.

The bins defined by the control population are then
applied to a comparison sample. The number of events
falling within each bin are determined, and the normal-
ized chi-squared value (x92) is calculated exactly as for the
one-dimensional PBC, namely:
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given that ci and si are the number of control and test
sample events falling into bin i, and Ec and Es are the total
number of events in the control and test samples. Theo-
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retically, x92 can range in values from a minimum of zero
to a maximum of two.

Derivation of the PB metric

As demonstrated in the accompanying paper (7), a
metric based on x92 can be derived empirically. This
metric is analogous to a t-score, i.e., a value of zero
indicates no statistical significance; a value of one indi-
cates that the x92 is one standard deviation above the
minimum significant value. Note that while the definition
of this metric was derived based on comparison of uni-

variate data, it holds just as well for multivariate data since
fundamentally this is a comparison of bin counts, irrespec-
tive of how those bins are defined.

In order to determine the distribution of x92, we gen-
erated several thousand FCS data files of artificial data.
Each data file contained from 30,000 to 300,000 events,
with three parameters, with randomly generated values.
The values of each event for each parameter were gener-
ated using a pseudo-random number generator that cre-
ates normal (Gaussian) distributions (8). Each set of data
files containing the same number of events were sub-

FIG. 1. Probability Binning. Shown is an example of two-dimensional probability binning on an artificial bivariate distribution. (1) In this distribution,
there are four populations, comprising 50%, 25%, 12.5%, and 12.5% of the total, as shown in the top left. Each numbered graphic is a subsequent binning
step. (2) The first step in binning is to divide the distribution in half along the dimension with the greatest variance (in this case, the X-axis). The red line
shows this division along the median of the X parameter. (3) For each of the two subsets of cells (to the left and to the right of the blue line), the data
is further divided in half (red lines). For each subset, the greatest variance is in the Y parameter. (4) For each of the four resulting subsets, the variance
in both parameters is determined. For three subsets, the greatest variance is in the X axis, thus they are divided according to their respective X median
values (red lines). For the lower right-hand subset, the greatest variance is in the Y axis; hence it is divided at the median for the Y values for that subset.
(5–8) The variance and median calculations for both parameters are measured for each subset, and the data is further subdivided (for each step, previous
divisions are shown in blue and the newest divisions in red). (9) After the division shown in (8), there are a total of 128 bins, each containing approximately
1/128th of the total events in the control sample. Note that the bins are smallest and cluster around high event densities, and are large where events are
more rare–thereby minimizing the maximum expected variance for a chi-square comparison on events in the bins. Probability binning in more than two
dimensions proceeds in an analogous fashion, except that at each step, for each subset, variances and medians for all parameters are calculated to select
the parameter on which that subset is divided; the resulting bins are n-dimensional hyper-rectangles.
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jected to PB using from 300 to 5,000 bins. The resulting
x92 distributions were normally-distributed, and depended
on the number of bins and number of events exactly as in
the univariate comparison (see accompanying paper (7),
Fig. 2; data not shown). Thus, we define the minimum
significant normalized chi-squared value x# 92, and the asso-
ciated standard deviation for this minimum chi-square sx92

based on the number of bins B used in the comparison,
and the event count E (where E is the minimum of the
number of events in the control sample (Ec) or the test
sample (Es)):

x# 92 5
B

E

sx92 5
ÎB

E

As for the univariate comparison, we define the metric
T(x) as

T~x! 5 maxS0,
~x9m

2 2 x# 92!

sx92
D

The only parameter to this algorithm is the number of bins
into which the control sample is to be divided. It is
apparent from the above equations (since x92 has a max-
imum value of two) that the number of bins should be
kept low enough that the minimum significant value x# 92

doesn’t become so large as to preclude assigning statistical
significance to any distribution. On the other hand, the
number of bins should be maximized so as to most easily
detect small changes in a distribution (i.e., if the entire
change in a distribution were to occur within a single bin,
then the statistic would not change). Thus, the effective-
ness of the metric for detecting subtle changes (in terms
of fluorescence intensity) may be limited by using small
numbers of bins.

Unlike the case for univariate comparisons, the number
of bins can quickly become limiting for this statistic (de-
pending on the number of events collected and the num-
ber of parameters compared). The maximum reasonable
number of bins is roughly 10% of the event count—
leading to a minimum of about 10 events per bin. (When
using more bins, the number of events per bin is smaller,
and the variance associated with each bin increases dra-
matically). Thus, for a 30,000 event collection, the maxi-

FIG. 2. Effect of the number of parameters included in the PB Comparison. Artificial distributions were constructed in which a varying percentage of
well-resolved positive events were added to a negative control In this simulation, there were three fluorescence parameters for each event. The positive
population was different than the negative for either one (red), two (green) or all three (blue) parameters. For parameters which were not different, the
distributions for the positive and negative population were identical. (A) Bivariate plots of three of the three-parameter data files used in the test (the data
points for these comparisons are boxed in the upper panel of (B)). In these three examples, the two equally-represented populations differ on the basis
of only parameter three (red), both parameters two and three (green), or all three parameters (blue). The full comparisons shown in the graphs were
performed on similar data sets, comprised of varying ratios of the two populations compared to a dataset comprised of only one of the two populations.
(B) Each point represents the PB comparison performed on a different dataset. The PB metric could distinguish a smaller percentage of positive events
when the positive events were different on the basis of more parameters. Using a cut-off of T(x) 5 4, the threshold for significance was achieved at 0.6%
(1/3 parameters had distinct distributions for positive and negative), 0.2% (2/3 parameters were distinct), and 0.15% (all three parameters were distinct).
(C) In these comparisons, the positive and negative events were well-resolved in two parameters, but had identical distributions for the third parameter.
The PB Comparison was performed using either all three parameters (circles) or only the two parameters that differed (squares). There is a slight decrease
in the sensitivity of the PB metric to identify small populations when a parameter that is invariant is included.
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mum number of bins is 3,000. This is obviously far too
many for a univariate comparison (where the limitation is
the number of channels in the histogram that contain
events, typically well under 1024). However, consider the
case in which a comparison of all five parameters of a
3-color sample (including the two scatter parameters) is
performed. Three-thousand bins in five-dimensional space
means that each parameter has been divided into approx-
imately five divisions (on average)–i.e., 55 ' 3,000.

The ability of the statistic to detect differences in dis-
tributions is limited by the dimensions of the bin. Clearly,
with bins that span an average of 1/5th of the range of each
parameter (although the bins are much smaller in areas
with many events), the metric will be relatively insensitive
to subtle changes in distribution.

However, this limitation can be overcome by reducing
the number of parameters in the comparison—at a cost of
losing the information provided by those parameters. In
the above example, using only four parameters, each
would be divided on average 7.5 times; comparing 3
parameters, each would be divided over 14 times (143 '
3,000).

Clearly, if all five parameters are needed in the compar-
ison, then more events may need to be collected in order
to distinguish subtle variations in the distributions. It may
be necessary to use a strategy of performing comparisons
using different subsets of parameters in order to identify
those, which provide the least discriminating power. The
final comparison would be performed using as many use-
ful parameters as possible given the limitations on the
number of events collected.

Note that the algorithm will divide parameters with
greater variance (more information) more frequently than
parameters with low variance. Thus, in the example
above, while the average number of divisions for a param-
eter may only be five, it is possible that (if the cells were
lymphocytes) the two scatter channels may only be di-
vided two or three times, leaving several additional divi-
sions for the fluorescence parameters. Some knowledge of
the expected outcome can provide an indication to the
user an appropriate number of events that need to be
collected in order to achieve the desired level of detec-
tion.

Validation of the PB Metric for Multivariate Data

In order to validate the metric T(x), we generated an-
other large series of data files. In these files, we added a
varying number of positive events to the negative distri-
bution, where positive events were also distributed nor-
mally in all three parameters, but with a mean that ranged
anywhere from 0.1 to 2.0 standard deviations above the
negative events. In addition, the positive events differed
either in only one, in only two, or in all three of the
parameters. In the first case, the events for the other two
parameters were distributed identically to the negative
events.

We performed a thorough analysis of the dependence
of T(x) on the total number of events, the representation
of positive events, the number of parameters which are

different for the positive and negative populations, and
the distance between positive and negative peaks. As for
the univariate comparison (accompanying paper (7), Fig.
3), T(x) depends monotonically and smoothly with both
the fraction of positive events as well as the separation
(Fig. 2 and data not shown). Thus, T(x) is a statistic which
not only provides an indication of the probability with
which two distributions are different, but also provides a
metric by which multiple distributions can be ranked.

Figure 2 demonstrates an additional feature of the PB
metric applied to multivariate data, that the metric is more
successful at identifying outlier events when those events
differ on the basis of more than one parameter (for a given
number of bins). This is expected, in that populations that
differ on the basis of more parameters provide a greater
amount of information with which they can be discrimi-
nated.

In Figure 3, these aspects of the multivariate PB algo-
rithm are compared in greater detail. Here, several thou-
sand comparisons were performed to generate each
graphic. Each comparison used different distributions as
described above. The contour graphs provide a visual
estimate of the minimum separation and/or representa-
tion of positive events within a distribution in order for
the PB metric to yield a statistically significant value.
Similar to the case for univariate comparisons, the PB
metric can resolve a relatively small number of well-sepa-
rated cells (100–300) from a larger population, indepen-
dent of the size of the larger population. In other words,
the more events that are collected, the smaller the fraction
of a contaminating subset can be detected.

Figure 3 confirms the more limited analyses shown in
Figure 2: that the more parameters which distinguish a
positive distribution, the smaller the number of events
necessary for identification. In addition, inclusion of pa-
rameters that do not distinguish the subsets into the algo-
rithm does not substantially affect the ability to resolve the
subsets.

Multisample Comparison: Uniting the
Control Dataset

In comparing multiple samples against each other, it is
sometimes not possible (or meaningful) to assign a single
sample as the control sample, against which all others are
to be compared. In such a case, we construct the bins
(along the algorithm exemplified in Fig. 1) on the concat-
enation of all test samples. Each sample is then measured
against the combined dataset; thus, each sample is as-
signed a value that is the distance from the average of the
samples. This process mitigates the potential artefact in-
troduced by selection of a sample as a control that is
actually significantly different than the expected control
sample. It may also be useful to designate a set of samples
to be used as the control for binning purposes, rather than
including potentially distant outliers. In the end, the best
approach is probably iterative: include all samples in the
original binning and compute distances. After this, those
samples which are most distinct can be removed from the
set used as a control, and the statistic is recomputed. This
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process must be done with caution, since reduction of the
number of samples entered as a control can lead to sam-
pling bias, should the chosen set of controls not be truly
representative of all control samples.

Application of the PB Metric to
Immunofluorescence Data

We applied the multivariate PB algorithm to immuno-
fluorescence and light scatter data collected on a flow
cytometer. Our test data was derived from a three-color
immunofluorescence analysis of PBMC from 14 individu-
als (5 HIV1, 9 HIV-). Samples were stained with FITC
anti-CD14, PE anti-CD16, and C y5PE anti-CD45; data from
30,000 PBMC was stored.

In this series of comparisons, all 14 data files were
entered into the binning stage of the algorithm; the output
is therefore the distance from the sum of all 14 collec-
tions. As shown in Figure 4, various combinations of the
five parameters were entered into the comparison; the PB
metric (distance) is graphed, separated by HIV-status.

It is evident that there is a common difference in the
distribution of staining between HIV-infected adults and
healthy HIV-uninfected adults. In univariate comparisons,
this difference is most evident in the CD14 stain; other
parameters also carry additional statistical weight to the
difference. Interestingly, parameters which by themselves
carry no information as to the HIV-infection status (for
example, forward and side scattered light) can increase
the fidelity of identification of HIV-infected adults when
added to the comparison. This simply underscores the
multivariate nature of the differences in these distribu-
tions, suggesting that it would be nearly impossible on the
basis of only univariate comparisons to achieve the de-
sired distinction.

Application of the PB Metric to Identify
Genetically-Controlled Staining Patterns

We tested the hypothesis that the PB metric could
quantitate differences between lymphocyte staining pat-
terns of cells derived from different tissues and/or strains

FIG. 3. Detailed analysis of the dependence of T(x) on the fraction of positive events, the separation between positive and negative events, the number
of events in the sample sets, the number of parameters that are different for the positive and negative populations, and the number of parameters entered
into the statistic. As for Figure 2, artificial datasets were constructed that had different representations of two populations. The two populations could be
distinguished by either one, two, or three of the three parameters in the data. In each case, 1,500 bins were chosen for the analysis; all three parameters
were entered into the PB comparison. For each contour graph, 900 datasets were analyzed. A contour graph of T(x) is shown for each condition, as a
function of the separation of the two populations vs. the number of positive events. The boundary between the red and blue shaded areas (where T(x)
is approximately four) represents the minimum detectable contamination of a positive population. For example, for 30,000 events in which three
parameters distinguish the positive events (top left), approximately 1,000 events that are different by 0.2 standard deviations of the negative distribution
can be detected by the metric. If the distributions differ by 2.0 standard deviations (i.e., do not overlap), then the metric can identify as few as 200 events
out of 30,000. These analyses confirm the conclusions in the accompanying paper on the application of the PB metric to univariate data (7): the minimum
detectable number of events seems to be a relatively constant number (for a given difference in the positive and negative distributions); thus, collecting
a larger number of events will allow the detection of a commensurately smaller percentage of contaminating events.
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of mice. In particular, we analyzed two four-color immu-
nophenotyping panels (principally identifying B cell sub-
sets) applied to bone marrow, lymph nodes, and spleno-
cytes obtained either from inbred Balb/c or C57bl mice, or
mice derived from an F1 cross of these two strains. The PB
metric was applied to data gated only for live cells (by
propidium iodide exclusion) and by scatter gating.

As shown in Figure 5, the PB metric ranks these four-
color distributions in a manner that has significant biolog-
ical meaning. For example, whenever samples were com-
pared to a single control mouse, a litter mate was always
much more similar than samples from the same tissues of
other strains. Interestingly, the F1 mice were always
ranked closer to a parental strain than the other strain–
demonstrating that the complex immunophenotype of
the F1 hybrid is likely a mixture of phenotypes of each
parent. Furthermore, staining patterns of mice differing
only by age were much more closely related than mice
differing genetically.

Figure 5 allows the ranking of factors which contribute
to differences in immunophenotyping patterns of lympho-
cytes. For example, the most important factor is tissue
location: i.e., patterns from different tissues even in the

same mouse are more distantly-related than are patterns
from the same tissues of genetically-disparate mice. Of the
factors evaluated in this study, the relationship is as fol-
lows: tissue . background genetics (strain) . age . litter.

Finally, Figure 5C illustrates the reproducibility of the
PB metric. Comparison of samples obtained from different
genetically identical litter mates to a control sample gave
an average coefficient of variation of 11%. This variation is
considerably less than the actual differences observed
between experimental conditions (i.e., strain, tissue, age).

DISCUSSION
Fundamentally, the multivariate PB algorithm is identi-

cal to the univariate PB algorithm (7). The unique aspect
of the multivariate algorithm is how the data is divided
into bins on which the comparison is performed. As for
the univariate comparison, the algorithm we chose results
in a binning that equally divides the control distribution.
In other words, any single event from the control distri-
bution, selected at random, as the same probability of
falling into any of the given bins.

The advantage of this method over existing binning
methods is most evident for multiparametric data. Typical

FIG. 4. Application of the PB metric to three-color, five-parameter immunofluorescence data. PBMC from 5 HIV1 and 9 HIV- individuals was compared
using the PB metric. Cells were stained with FITC-anti CD14, PE anti-CD16, and Cy5PE anti-CD45. Data was broadly gated for CD451 events and then
entered into a multi-sample PB comparison. Each sample was compared against a control comprised of the aggregate of all 14 samples. The relative T(x)
is shown for comparisons that included different combinations of the 5 parameters. The T(x) distributions for HIV1 and HIV- were compared using a t-test;
the p-value for this comparison is shown above each graph.
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flow cytometry data is collected with 1,024 channel res-
olution. Thus, the maximum number of bins for a univar-
iate distribution is 1,024–many of which will be empty for
a typical measurement. With two parameter data, how-
ever, the maximum number of bins is 1,0242, or greater
than 106. With four-color, six parameter data, the number
of bins is over 1018. This is much too large to handle with
today’s computational limits. Thus, the standard approach
is to only divide each channel into, for example, 10 bins.
Even so, the six-parameter data results in 106 bins, a vast
majority of which are empty.

Rather than using equally-sized bins, our algorithm gen-
erates a large number of very small bins where events are
densely packed, and much larger bins where events are

spread out (Fig. 1). The limit on the number of bins is
primarily driven by the number of events. Given the de-
pendence of the smallest meaningful chi-squared value on
event counts, we choose to divide the data into at most
n/10 bins, where n is the number of events (i.e., resulting
in at least 10 events per bin). The division of the data
equally into bins is important, because it minimizes the
maximum expected variance for the statistic.

The algorithm we chose to divide the distribution
chooses the parameter with the greatest variance and
divides it in half. A possible downside of this approach is
the tendency to divide uniform populations right down
the middle of the population. This may tend to emphasize
subtle shifts in the position of the bulk population rather

FIG. 5. Application of the multiparameter PB comparison algorithm to identify genetically-controlled murine lymphocyte staining patterns. Mouse
lymphocytes were isolated from bone marrow (BM), lymph nodes (LN), or spleen (Spl) from Balb/c, C57bl, or Balb/c x C56bl (F1) mice. Mice were
sacrificed at eight weeks of age (except, where noted, at six weeks). (A) Balb/c bone marrow cells were stained either with PI and a combination of
antibodies to CD43, CD45/B220, HSA, and BP-1. Large live cells were selected based on Forward scatter and PI fluorescence (top left) as well as forward
vs side scatter (top right). The bottom two panels are bivariate plots showing the staining patterns obtained with the four antibodies. (B) Cells were stained
with PI and a combination of antibodies to CD21, CD23, IgM and AA4.1. Live cells were selected as in (A). The panels are bivariate plots showing the
staining patterns obtained with the four antibodies for cells from a Balb/c spleen, lymph node, or bone marrow. (C) The gating shown in (A) was applied
to bone marrow cells from two littermates from each of three strains at two different ages. One eight-week old Balb/c mouse was used as a control sample;
all others were compared to it using the PB algorithm. All four immunofluorescence stains were entered into the comparison; approximately 1000 bins
were used for the 100,000 event data files. (D) The gating similar to that shown in (B) was applied to cells from spleen, lymph nodes, or bone marrow
from the same mice as in (C). All four immunofluorescence stains were entered into a PB comparison using 1000 bins on 100,000 events; a single Balb/c
spleen (left) or bone marrow (right ) was used as the control.
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than subtle shifts in outlying events. The other possible
disadvantage of using the variance to decide on which
parameter to divide is the inherent assumption that all of
the parameters are scaled similarly. With typical log-scaled
flow cytometric data, this is a reasonable assumption.
However, it may be useful to scale the variance of each
parameter by the range of the data (or some other nor-
malization factor) in order to weight parameters which
have high information content in a relatively small number
of channels.

Perhaps a more powerful approach to each division
step would be to evaluate the distributions parametrically
and decide how many divisions to make at that particular
step. For example, if the distribution of the parameter to
be divided was uniform or normal, then it might be di-
vided into three tertiles, so as to have bins that emphasize
the tails of the distribution and have no division in the
middle of the distribution. The choice of which parameter
to divide might include criteria not only related to vari-
ance, but, for example, how Gaussian the distribution
is—i.e., preferentially splitting non-normal distributions
with the presumption that they carry more information
than normal distributions. These types of algorithmic re-
finements may become more important for the analysis of
81 parameter files, where the number of divisions of each
parameter is highly limited by the number of events that
were collected.

This limitation was discussed in the Results section.
While inclusion of parameters that are not different be-
tween samples does not necessarily impede the ability of
the algorithm to detect differences (Fig. 2), it significantly
reduces the number of times other parameters can be
divided. The more divisions that are applied to any given
parameter, the more subtle the differences in distributions
of that parameter can be detected. In any case, it will
always be true that collection of more events in each
sample will result in greater fidelity for identifying subtle
changes or appearances of rare subsets.

The application of the PB algorithm to immunofluores-
cence data demonstrated that it is potentially very useful
for identifying differences in multivariate distributions—
even in quantitating those differences to achieve biologi-
cally meaningful results. The PB comparison is nonpara-
metric and does not rely on user interaction (beyond
possibly setting criteria for the desired number of bins),
and thus represents an objective way to compare these
distributions. As shown in Figure 4, this algorithm could
be used to distinguish HIV1 from HIV– samples. It is
important to note that this distinction was possible with-
out the prior identification of which samples were HIV1
or HIV–. Each sample was compared to a combined con-
trol comprised of the union of all samples. Of course, by

comparing the samples to a union of only known HIV–
samples, the algorithm is likely to be even more powerful
at distinguishing unknown samples.

The application of the algorithm to the analysis of B
cells from different strains, ages, and tissues of mice
proved to be very interesting. Based on the PB output, we
can rank how different is distribution of expression of
these markers (in four-dimensional space). Not unexpect-
edly, we found that cells from the same tissue of a litter
mate were much more closely related that cells from a
different mouse; different mice were more or less differ-
ent depending on their genetic backgrounds. Cells from
different tissues were even more different than this. These
types of analyses may prove highly informative in explor-
ing the genetic control immunophenotype in mouse and
even in man.

Finally, one of the powers of Probability Binning is that
the algorithm can be used to identify which parts of a
(multivariate) distribution are different from a control
sample: i.e., it can generate a gate comprising of the
events which are different in the sample compared to a
control. This is explored in detail in the accompanying
paper (9).

In summary, Probability Binning is a novel and unique
statistic for comparing multivariate distributions of event
data. It provides a reasonable and reproducible probability
that two or more distributions are different, it can be used
to determine the percent contamination by an second
population of events, and it can be used to rank differ-
ences between test samples to identify those most or least
like the control sample.
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