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Background: In immunofluorescence measurements
and most other flow cytometry applications, fluores-
cence signals of interest can range down to essentially
zero. After fluorescence compensation, some cell popu-
lations will have low means and include events with neg-
ative data values. Logarithmic presentation has been
very useful in providing informative displays of wide-ran-
ging flow cytometry data, but it fails to adequately dis-
play cell populations with low means and high variances
and, in particular, offers no way to include negative data
values. This has led to a great deal of difficulty in inter-
preting and understanding flow cytometry data, has
often resulted in incorrect delineation of cell popula-
tions, and has led many people to question the correct-
ness of compensation computations that were, in fact,
correct.
Results: We identified a set of criteria for creating data
visualization methods that accommodate the scaling diffi-
culties presented by flow cytometry data. On the basis of
these, we developed a new data visualization method that
provides important advantages over linear or logarithmic
scaling for display of flow cytometry data, a scaling we

refer to as ‘‘Logicle’’ scaling. Logicle functions represent a
particular generalization of the hyperbolic sine function
with one more adjustable parameter than linear or loga-
rithmic functions. Finally, we developed methods for
objectively and automatically selecting an appropriate
value for this parameter.
Conclusions: The Logicle display method provides more
complete, appropriate, and readily interpretable represen-
tations of data that includes populations with low-to-zero
means, including distributions resulting from fluorescence
compensation procedures, than can be produced using ei-
ther logarithmic or linear displays. The method includes a
specific algorithm for evaluating actual data distributions
and deriving parameters of the Logicle scaling function
appropriate for optimal display of that data. It is critical to
note that Logicle visualization does not change the data
values or the descriptive statistics computed from them.
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Practical experience has demonstrated that marker dis-
tributions measured by flow cytometry are often more-or-
less log-normal or are composed of mixtures of log-normal
distributions. Logarithmic data scales, which show log-
normal distributions as symmetrical peaks, are widely
used and accepted as those facilitating analysis of fluores-
cence measurements in biological systems (1).

On the other hand, cell populations with low mean,
high variance, and approximately normally distributed flu-
orescence values occur commonly in various kinds of flow
cytometry data. In particular, data values for cell popula-
tions that are essentially unstained or are negative for a
particular dye, after fluorescence compensation, should
be distributed more-or-less normally around a low value
representing the autofluorescence of the cells in that data
dimension. Data sets resulting from computed compensa-
tion commonly (and properly) include populations whose

distributions extend below zero. (When analog compensa-
tion is used, such distributions should also appear, but the
electronic implementations distort or truncate the distri-
butions, so that negative values are suppressed.)
Logarithmic displays, however, cannot accommodate

zero or negative values and often show a peak above the
actual mean or median of the population with a pileup of
events on the baseline (see Fig. 1). This effect has been
the source of considerable confusion and has been com-
monly referred to as the ‘‘log artifact.’’ Linear scaling is
more appropriate and more easily interpreted for display
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of fluorescence compensated data on cell populations that
are low to negative for a particular dye.

Thus, there is a need for display scales that combine the
desirable attributes of the log scale for large real signals with
those of the linear scale for unstained and near-background
signals. The Logicle method presented here solves this pro-
blem by plotting data on axes that are asymptotically linear
in the region, around a data value of zero and asymptoti-
cally logarithmic at higher (positive and negative) values.

Figure 1 illustrates the utility of Logicle scaling in facili-
tating accurate interpretation of flow cytometry data. The
Logicle displays in the left panels show well-defined cell
populations in the gated regions. There are very few
events (well under 1%) on the baselines, and the medians
of events in each region (marked with crosses) are appro-
priately central to the visual data. In contrast, logarithmic
presentation of the same data sets (center and right
panels) makes the actually compact cell populations look
split into above-baseline and on-baseline ‘‘populations.’’ In
each data set, about 45% of the data events are on the
baselines (and in the dot displays almost invisible). The
medians of the populations are nowhere near their visual

centers. Logarithmic scaling, therefore, produces unintui-
tive data displays, and can lead to incorrect data evalua-
tions and attempts to define separate populations that are
not in reality separate. Additional benefits of Logicle data
display are discussed later in the Results section.

Background on Multicolor Fluorescence and
Compensation

In a flow cytometer, each fluorescence detector accepts
light from a particular laser excitation and in a particular
range of emission wavelengths optimized to detect a parti-
cular dye. However, each dye whose excitation is nonzero
at that laser wavelength and whose emission is not zero in
the detector’s emission band will contribute signal on that
detector. Therefore, although fluorescent dye combina-
tions used in flow cytometry are selected to minimize
spectral overlaps in multicolor measurements, each dye
will typically contribute signal on several detectors, and
each detector will receive some signal from several dyes.
For each cell in a biological analysis, we generally want

to separate the signal contributions from the different
dyes, so that an estimate of the amount of each fluorescent

FIG. 1. Two samples of mouse spleen cells stained for CD5 and IgD and gated in light scatter and other fluorescent markers for viable lymphocytes (upper
panels) or viable non-T-cells (lower panels). The measurements were made on a FACSAria and compensated and analyzed in FlowJo. The arrow in the
upper–center logarithmic display panel points out a data artifact resulting from applying the compensation calculation to log data, in which low or negative
data values have been truncated. This does not occur when the full data is retained.
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reagent is obtained. The process of converting from fluo-
rescence color measurements to dye estimates is com-
monly called fluorescence compensation. Although the
technique was originally developed for analysis of two-
color single laser measurements (2), it is particularly criti-
cal in multicolor work. By evaluating the response of each
of the detectors to a series of compensation control sam-
ples, each of which is labeled with only one dye, we con-
struct a matrix of relative spectral overlaps. For each cell,
we multiply a set of detector color measurements by the
inverse of the spectral overlap matrix to obtain the corre-
sponding set of dye estimates for the cell. This calculation
is based on simple linear algebra, so any particular set of
color measurement values yields a specific set of dye esti-
mates. The estimated dye amounts are exactly those
whose total signal on each detector would yield the color
measurements actually observed.

Statistical Uncertainties in Dye Estimates

As is so often the case, this algebraic analysis is not com-
plete in the real world. The fundamental deviation comes
from the quantum nature of light and the finite amount of
light detected. Thus, the detected signal is subject to what
is commonly called counting statistics, governed by the
Poisson distribution. In practice, the limiting step is the
number of photoelectrons emitted at the cathode of the
photomultiplier tube. The standard deviation of actual
measurements in relation to their theoretical expectation
scales with the square root of the number of photoelec-
trons detected.

For cells with just autofluorescence or very low dye
levels, the effects of photon statistics, possible electronic
noise, and real differences in low-level fluorescence among
cells in a particular population often result in signal distri-
butions with low means and high relative variances. This
problem becomes magnified after fluorescence compensa-
tion, since the compensated value is subject to error contri-
butions from multiple measurements. This can readily lead
to a standard deviation of the dye estimate which is greater
than the mean for that estimate. This phenomenon has
been discussed and illustrated by Roederer (3). The end
result is that distributions of compensated dye estimates for
cells that are unstained by a given dye are often nearly nor-
mal and centered near zero, and may have large variances
compared to the corresponding distributions for totally
unstained cells. In particular, this process can properly
result in negative dye estimates for some cells even though,
of course, negative dye amounts are not possible. These
negative values must not be disregarded, since truncating
them will deform the data distributions and result in incor-
rect computation of signal means.

The overall result is that cell samples measured by flow
cytometry often contain cell populations whose signal dis-
tributions are appropriately represented in logarithmic
displays along with populations whose distributions can-
not be properly shown in a logarithmic display. Logicle
functions and methods were developed to provide unified
displays in which these different populations can all be
represented in a clear and intuitive way.

MATERIALS AND METHODS
Test Particles and Cell Samples

Spherotech Rainbow multidye particles (Spherotech,
Libertyville, IL) were used for the data in Figure 5. Reagent
capture beads carrying a monoclonal rat-anti-mouse j anti-
body and matched blank beads (both from BD Biosciences,
San Jose, CA), were used to produce the data in Figure 6.
All of these particles are about 3 lm in diameter.
Cell samples, used to generate the illustrations, are de-

scribed in the figure captions.

Instrumentation

Illustrative data were obtained using a FACSAria (BD
Biosciences, San Jose, CA), which employs linear digital
data acquisition with 14 bit sampling at 10 MHz rate. Area
signals are produced as sums, over a range of �50–100
samples, and are presented as 18-bit linear values. Since
background subtraction is included in the evaluation, zero
and negative data values can occur. These are preserved in
the floating point FCS files.

Data Analysis and Modeling

Analysis of data from the flow cytometer was carried
out in FlowJo (Tree Star, Ashland, OR) version 4.3 or later.
This package includes the ability to import floating point
FCS files into Logicle scaling, so that negative data values
are retained. FlowJo provides support for computed fluo-
rescence compensation, including automatic selection of
appropriate Logicle scale functions for each compensated
data dimension. In producing Figure 2, the spectral matri-
ces used in computing fluorescence compensation were
edited externally and imported into FlowJo to generate il-
lustrative data distributions.
Modeling and plotting of Logicle functions and various

other functions for comparisons were carried out in
Microsoft Excel.

RESULTS
Criteria for a New Data Display Method

We developed the following criteria for defining a new
scaling function that would yield better displays for much
flow cytometry data than can be produced using tradi-
tional logarithmic or linear scaling.

� The display formula supports a family of functions
that can be optimized for viewing different data sets.

� The function becomes logarithmic for large data
values, to ensure a wide dynamic range and to pro-
vide good visualizations of the often log-normal distri-
butions, at high fluorescence intensities.

� The function becomes linear near zero, and extends to
negative data values and is symmetrical around zero,
providing near-linear visualization, appropriate for lin-
ear–normal distributions at low fluorescence intensities.

� The transition between the linear to logarithmic
regions is as smooth as possible, to avoid introducing
artifacts in the display.
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� As the linearization strength is increased to accommo-
date a wider range of linearized data values, the reason-
ably linear region of the data values grows faster than
the size of the linearized region in the display. Thus,
the user has a visual indication that a greater degree of
linearization is in use, but the display space is balanced
between more linear and more logarithmic regions.

Specification of Logicle Functions

By considering these criteria and examining the behavior
of a number of functions, we concluded that particular gen-
eralizations of the hyperbolic sine function (sinh), which
we came to call Logicle functions, can best meet the crite-
ria. The hyperbolic sine function itself has the desirable
properties of being essentially linear near zero, becoming
exponential for large values (leading to a logarithmic display
scale there), and making a very smooth transition between
these regions (i.e., it is continuous in all derivatives), but it
does not provide enough flexibility to meet the display
needs encountered in flow cytometry.1

The hyperbolic sine function itself is given as follows:

sinhðxÞ ¼ ðex � e�xÞ=2 ð1Þ

This can be generalized to what we call biexponential
functions,

Sðx;a; b; c;d; f Þ ¼ aebx � ce�dx þ f ð2Þ

Interpreting the condition of maximal linearity around
data value zero to mean that the second derivative of the

function should be zero therein, we identified a subset of
biexponential functions with this property and call them
Logicle scaling functions.
Besides the constraint just specified, there are four fur-

ther choices that need to be made to fix the five parame-
ters in Eq. (2) (a, b, c, d, and f), and thereby define a speci-
fic display. How these choices appear in an actual Logicle
display is illustrated in Figure 2. The parameters described
later and in Figure 2 are not simply a, b, c, d, and f, but,
once specified, they uniquely determine the function in
Eq. (2). The first choice is the maximum data value in the
displayed scale (T). The second is the range of the display
in relation to the width of high data value decades (M or
m in decade or natural log formulations, respectively). If
this is held constant among plots optimized to different
data sets, the nearly logarithmic area at the upper end of
each display will be essentially the same, while the region
near data zero is adjusted to optimize for different data
sets. We have found that a total plot width of 4.5 ‘‘dec-
ades’’ is usually a good choice for displaying flow cytome-
try data.
The third choice is the strength and range of lineariza-

tion around zero (W or w). The linear slope at zero (in, for
example, data units per pixel or data units per mm in a
printout) and the range of data values in the nearly linear
zone are determined by this selection. In displaying a par-
ticular data set, the linearized range must be adequate to
cover broad population distributions that do not display
well on log scales. This, in particular, is the selection that
is critical in matching displays to particular data sets and
in ensuring that the linearized zone covers the range of
statistical spread in the data. If the transition toward log
behavior occurs in too low data values, the artifacts seen
in logarithmic displays will not be suppressed.
The fourth choice is to specify the range of negative

values to be included in the display (which also defines
the position of the data zero in the plot). This range must
be great enough to avoid truncating populations of inter-
est. In practice, as shown in Figure 2, we find that it is de-
sirable to link the third and fourth choices as a single

1NOTE: In cytometry, we normally label ‘‘logarithmic’’ axes with values

from the corresponding exponential function, rather than with the loga-

rithm itself, e.g., decade labels like 10, 100, 1,000 and not 1, 2, and 3. The

Logicle functions defined in the equations given later are data value func-

tions. Their inverses provide Logicle display functions in the same way

that exponential scaling functions provide logarithmic data displays.

FIG. 2. How the Logicle parameters relate to the resulting Logicle scale and data display. M and W are expressed in decades, i.e., base 10 log units. Their
natural log forms are m 5 M ln(10) and w 5 W ln(10). The data curves are only for illustration here but are used and described in Figure 5. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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value. This assures that the lowest negative data values in
view correspond to the approximate edge of the linear-
ized zone. As discussed earlier under Statistical Uncertain-
ties, negative values should occur only as a result of statis-
tical spreading, and, therefore, they should be displayed
within the near-linear zone.

Assuming that the top-of-scale value and the nominal
‘‘decade’’ width of the display have been selected, linking
the third and fourth choices results in a family of functions
with only one parameter to be adjusted to match the parti-
cular data set being displayed.

Using natural log units, an expression for the Logicle
scaling function that embodies all of the constraints and
choices described earlier is given as follows:

S(x;w) ¼ Te�ðm�wÞðex�w � p2e�ðx�wÞ=p þ p2 � 1Þ
for x � w ð3Þ

In Eq. (3), T is the top of scale data value (e.g., 10,000 for
common 4 decade data or 262,144 for an 18 bit data
range).

w 5 2p ln(p)/(p 1 1) is the width of the negative data
range and the range of linearized data in natural log units.
p is introduced for compactness in presenting the Logicle
function, but p and w together represent a single adjusta-
ble parameter.

m is the breadth of the display in natural log units. For a
4.5 decade, display range m5 4.5 ln(10) 5 10.36.

The display is defined for x in the range from 0 to m.
Negative data values appear in the space from x 5 0 to
x 5 w, and positive data values are plotted between x 5
w and x 5 m (where the top data value T occurs). The
form shown as Eq. (3) is for the positive data zone, where
x � w. For the negative zone where x < w, we enforce
symmetry by computing the Logicle function for the cor-
responding positive value (w 2 x) and changing the sign.
The data zero at x 5 w is where the second derivative is
zero, i.e., the most linear area.

To select an appropriate value for w to generate a good
display for a particular data set, we obtain a reference value
marking the low end of the distribution to be displayed. As
described later, we typically select the data value at the fifth
percentile of all events that are below zero as this reference
value. Designating this (negative) value as ‘‘r,’’ and using its
absolute value abs(r), w is computed as follows:

w ¼ ðm� lnðT=absðrÞÞÞ=2 ð4Þ

Equations (3) and (4) can be rewritten using base 10 rep-
resentation in order to express the parameters in terms of
‘‘decades’’ of signal level or display:

SðX;W Þ ¼ T � 10�ðM�W Þð10X�W�p2 � 10�ðX�W Þ=pþp2�1Þ
for X � W ð5Þ

In Eq. (5), W 5 2p log(p)/(p 1 1) is the width of the nega-
tive data range and the range of linearized data in ‘‘dec-

ades’’ and M is the breadth of the display in ‘‘decades.’’ For
a 4.5 decade, display range M 5 4.5.
We obtain W from the negative range reference value

‘‘r’’ as follows:

W ¼ ðM � logðT=absðrÞÞÞ=2 ð6Þ

Figure 2 illustrates the relationship between these parame-
ters and the resulting Logicle display.
Specifying a logarithmic display requires two values cor-

responding to T and M, and the scaling near the upper
end of a Logicle plot approximates that of a logarithmic
display with the same values of T and M. The additional
linearization width,W, adapts the Logicle scale to the char-
acteristics of different data sets.
Logicle functions with different values of W are plotted

in Figure 3 along with the linear and exponential func-
tions that match them around data zero and at high data
values, respectively. Use of an exponential function for
scaling is what results in a logarithmic scale. Note that
each Logicle curve closely follows its matched linear func-
tion at low signal values, confirming good linearity in the
region around data zero. At middle signal values that vary
depending on the value of W, the Logicle functions depart
from linearity and move smoothly toward the exponential
line. At high signal levels, the Logicle curves become indis-
tinguishable from the exponential line.
Figure 4 shows a Logicle curve for W 5 1.0 and its

matched linear and exponential curves displayed with a lin-
ear signal level scale. The signal level scale is expanded
(top of scale is 300 rather than 10,000) to show in detail
the matching of the Logicle and linear curves at low signal
levels and the divergence of the Logicle curve at higher
levels and the beginning of its approach to the exponential
curve.

Strategy for Selecting the Width Parameter

As we have discussed, proper estimates of dye signals
using measurements on individual cells may be negative,
but actual negative dye amounts are impossible. There-
fore, any negative values present in the compensated
data must be due to purely statistical effects. This is true
despite the presence of essentially arbitrary positive stain-
ing distributions. Thus, for a population with near zero
mean and significant statistical spread, the most negative
values indicate the necessary range of the negative part
of the scale, and they also indicate the range of lineariza-
tion needed to ensure that the population will be dis-
played in a compact and unimodal form. The positive
part of the population is less helpful, since it may overlap
with other populations in the data set and may not pro-
vide a clear upper end with which to define a suitable
range for linearization.
A simple strategy of choosing the fifth percentile of the

negative data values to set this scale seems to work well
and combines adequate sensitivity to extreme values with
reasonable sampling stability. Using this strategy (the one
currently implemented in FlowJo and illustrated in Figure 2
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based on the leftmost of the four data distributions), the
visible negative data range extends somewhat below the
fifth percentile of negatives reference data value, so that
almost all the negative data (out to roughly 1.5 times the
negative reference data value) is actually seen in the plot.

In cases where no negative data values occur or the neg-
ative values are all close to zero, our experience indicates
that a minimal Logicle scale sufficient to linearize data in
the range of cell autofluorescence provides a more readily

interpreted view of the data than does a purely logarith-
mic scale.
In some data sets, there are few negative data values,

but some aberrant events yielding extreme negative values
also occur. In such cases, the fifth percentile of negatives
value may lead to a value ofW, too high for optimal display
of the main data set. Gating out the unrepresentative nega-
tive data points and reapplying the automatic scale selec-
tion to the gated data cures this problem.

FIG. 3. Logicle, linear, and expo-
nential scaling functions. The Logi-
cle functions are plotted for W 5 0,
W 5 0.5, W 5 1.0, and W 5 1.5. The
display range covers 4.5 ‘‘decades,’’
and the signal level scale is logarith-
mic, so only the positive data values
can be represented. The black diago-
nal line in each panel is a pure expo-
nential, i.e., the scaling function for
a standard logarithmic display. The
green broken lines are pure linear
functions with zero crossings, and
slopes matched to the correspond-
ing Logicle curves (red). [Color fig-
ure can be viewed in the online
issue, which is available at www.
interscience.wiley.com.]
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To achieve consistency in data display when analyzing
experiments that include a number of samples to be com-
pared, it is appropriate to fix the Logicle scale (for each
dimension) based on the most extreme sample present
(usually one with the maximum number of labels in use)
and use these fixed scales to analyze all similarly stained
samples in the experiment. The current implementation
in FlowJo bases the scale selection on a single user-speci-
fied (gated) data set. A simple and probably desirable vari-
ant of this method which has not yet been implemented
in user software would operate on a group of data sets
designated to be analyzed together. The Logicle width pa-
rameter would be evaluated for each dimension in each
data set, and the largest resulting width in each dimension
would be selected for the common displays. In general,
when there are multiple populations in a single sample or
multiple samples to be viewed on the same display scale,
the population or sample with the greatest negative
extent should drive the selection of W.

The method we have chosen for defining the negative
end of the display scale in relation to the linearization
width makes it possible to evaluate the appropriateness of
a particular scaling for a specific data set, by examining
the negative data region. If a substantial fraction of the
negative data values pile up at the low end of the scale,
the value of W is too low to properly display this data, and
a higher value of W should be used. If there is a lot of
empty negative data space below the lowest population of
interest, the linearized region around zero is more com-
pressed than necessary. The population will be properly
compact and unimodal, but it would be advantageous to
lowerW and obtain a more expanded view.

The Effective Dynamic Range of a Logicle Display

We can give a precise expression for the range of varia-
tion in scale across a Logicle plot in a form analogous to
the ‘‘dynamic range’’ of a logarithmic plot. An ordinary log-

arithmic scale is often characterized by the number of
‘‘decades’’, i.e., by the common logarithm of the ratio of
the maximum to the minimum data values. Clearly, with
Logicle scales that extend through zero, such a formula
cannot work. However, if we consider the variation in the
number of data units corresponding to a given width on
the display, we get a relevant and useful ratio correspond-
ing to the range of expansion or compression of the data
across the plot. Mathematically, this is the ratio of the
highest and lowest values of the slope or derivative of the
scale function within the plot. For an ordinary logarithmic
scale, this method yields exactly the same results as the
usual procedure, i.e., the common logarithm of this ratio
of slopes is the same as the number of decades, as defined
earlier. For a Logicle scale, the ratio of maximum to mini-
mum derivatives (at the top of scale and data zero, respec-
tively) varies as a function of the linearization width W.
Working from the expression in Eq. (3), the derivative is

given as follows:

S0ðX;W Þ ¼ Te�ðm�wÞðex�w þ pe�ðx�wÞ=pÞ
for x � w ð7Þ

The effective dynamic range discussed earlier is S0(m;w)/
S0(w;w), i.e., the ratio of derivatives at x 5 m and x 5 w.
For the Logicle curves illustrated in Figure 3 with M 5

4.5 decades, the effective dynamic ranges are 4.2, 3.5, 2.8,
and 2.1 decades for width values W 5 0.0, 0.5, 1.0, and
1.5, respectively. (The dynamic range of the logarithmic
plot with comparable scaling in the upper range would be
4.5 decades.)

Illustrations and Interpretation of Logicle Displays

Figure 5 shows a comparison of logarithmic and Logicle
displays of four signal level distributions that have differ-
ent means but the same real width of about 2,000 signal
level units. Note that the two higher level curves look
essentially the same in the two displays, since they occur
at signal levels where the Logicle scale is nearly logarith-
mic. However, the lowest curve is shown very differently
in the two graphs. In the Logicle plot, the mean data value
occurs at the visual center of the peak and very few data
events (less than 1%) fall at the low edge of the scale. In
contrast, the logarithmic display for this data set fails to
convey an accurate view of the data, in that the mean of
the data appears in a highly counter-intuitive location far
from the apparent peak of the plot. Also, of course, 49%
of very low and negative data values are piled up in an
uninterpretable spike at the left edge of the display. This
kind of behavior constitutes what may be referred to as a
‘‘log artifact’’ or, more colorfully, the ‘‘valley of death.’’ The
second curve from the bottom is intermediate in that it is
well represented in the Logicle display, but shows a mod-
erate amount of ‘‘log artifact’’ in the logarithmic display.
Figure 6 illustrates the value of Logicle displays for intui-

tive and accurate interpretation of fluorescence compen-
sated data and their particular value in the analysis of data
acquired in high resolution linear data systems. A mixture

FIG. 4. Logicle, linear, and exponential scaling functions. The same
Logicle function, shown in the W 5 1.0 panel of Figure, 3 is presented
with a linear signal level scale. To visualize the relationships between the
different functions clearly, the signal level is shown only from 2100 to
1300, and the display range is shown only from 0 to 3. [Color figure can
be viewed in the online issue, which is available at www.interscience.
wiley.com.]
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of unlabeled microspheres and antibody capture micro-
spheres (BD Biosciences) loaded with FITC antibody were
analyzed on a FACSAria cytometer (BD Biosciences),
which produces floating point data with values up to 218

or 262,144 and may include (background subtracted) data
values below zero. In the upper panels, uncompensated
data is shown in Logicle, 4-decade log, 5.5 decade log
pseudocolor dot display, and 5.5 decade log contour dis-
play. Computed compensation based partly on this sample
itself leads to the matching compensated data set shown
in the lower panels. In the uncompensated Logicle dis-
play, the population of unlabeled particles forms a com-
pact two-dimensional peak centered near zero and in-
cludes some negative values for events whose measured
signal was below the average background. The 4-decade
log display piles up all data values below 26 (5 262,144/
10,000) at 26, and the 5.5-decade displays pile up zero
and negative data values at 1. The arrow in the 5.5 decade
log pseudocolor dot display points out the distracting but
otherwise harmless ‘‘picket fencing’’ in the low region,
where display pixels are denser than actual data values.

In Logicle displays of compensation control samples, it
is easy to confirm that compensation is correct. The com-
pensated Logicle display (lower left) shows clearly that, as
expected for an FITC compensation control, the centers
of the distributions for unlabeled particles and FITC-
labeled particles match at a value near zero in the <PE-A>
dimension. It is obvious that the FITC high population has
greater spread in the <PE-A> dimension (as would be ex-
pected from the discussion earlier under Statistical Uncer-

tainties in Dye Estimates) and that the threshold amount
of real PE needed for identification of PE positive events
would be greater on the FITC high population than on the
FITC negative population. In the logarithmic displays of
the compensated data, the apparent center of the FITC
labeled population looks higher in the <PE-A> dimension
than does the center of the unlabeled population. This is
another manifestation of the ‘‘log artifact.’’ In fact, the PE
dimension medians of the two populations are equal.
Adjusting compensation by eye using logarithmic displays
is unlikely to lead to correct compensation.
An appropriate selection of the Logicle width parameter

assures that almost all data events will be displayed on
scale. Less than 1% of the events in the compensated Logi-
cle display in Figure 6 fall on the baselines. In the logarith-
mic displays, 45–80% of the events in the two populations
fall on the baselines where their frequencies and actual
measurement values cannot be interpreted visually. The
events piled up on the low margins of the logarithmic
color dot plots are almost invisible, while the pileup con-
tours on the margins of the logarithmic contour plot make
it look like that there may be separate populations there.

DISCUSSION
Additional Benefits of Logicle Methods

Full range Logicle displays of fluorescence compensated
data are useful in detecting errors, in avoiding erroneous
interpretations and in monitoring for quality control pur-
poses. Since negative data values should be generated

FIG. 5. Logarithmic and Logicle presentations of four data distributions whose means are different but whose real widths are the same. The distributions
were generated by applying different ‘‘compensation’’ amounts to a distribution for single test particles. The highest curve at about 30,000 units represents
zero compensation. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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purely by statistical processes producing more-or-less nor-
mal distributions, data distributions in the negative zone
should reflect this and not include peaks or other addi-
tional structure. Any such structure points to a problem in
the data itself or in the data processing which should be
corrected before proceeding with the analysis. In particu-
lar, errors in defining the compensation matrix or apply-
ing the wrong matrix for the data will frequently produce
clear visual artifacts in the negative data range.

Logicle coding could provide a compact way to store
and transfer high dynamic range data of the types appro-
priate for Logicle display while retaining appropriate reso-
lution over the whole data range. For example, recent
instruments from BD Biosciences produce data values
from 218 down through zero to negative values, presented
as 32 bit real numbers. Logicle coding at 10–12 bits could
retain all the relevant resolution in most data acquired on
such instruments.

Alternative Approaches and Proposals

As described later, several possible data display methods
and functions occurred to us or have been suggested by
the work of others. In the course of investigating these
and evaluating their limitations, we framed the list of crite-
ria presented at the beginning of the Results section that
led us to define Logicle functions. None of the other meth-
ods fulfills these criteria, and no proposal for alternative
displays that we are aware of has adequately addressed

the issue of how to choose the scale parameter(s) opti-
mally to match particular data. Bagwell (4) discusses the
factors involved in making adequate choices among his
Hyperlog functions, but recommends generic scale choice
rather than optimization to particular data.
We considered the method of adding a constant to all

data values, thus making all or nearly all of the negative
values positive and then taking the logarithm, but found
that, while it mitigates the distortions of populations with
high variance and small mean that occur in logarithmic
displays, it still produces the ‘‘log artifact.’’ It also does not
have good linearity in the near zero region.
Another fairly obvious approach is to simply pick a tran-

sition point and use the logarithm for higher data values
and a linear scale for smaller values. If the splice is made
so that the resulting function is smooth, i.e., continuous
in the first derivative so as to minimize distortion of distri-
butions at this boundary, then the function is completely
determined by the choice of splice point. We found that
the derivative matching requirement in a linear-log splice
leads to functions with too little flexibility or adjustability
to meet the criteria we set. Splice functions that do not
match at least the first derivative at the splice would tend
to generate significant artifacts in the display.
One application area where functions close to linear

around zero and logarithmic for high data values have
been developed is in coding and compression of audio sig-
nals where the process is called ‘‘companding’’ (5). Such
audio is, of course, bipolar, so negative values must be

FIG. 6. Comparison of Logicle, 4-decade log, and 5.5-decade log displays for uncompensated and compensated versions of a single stain compensation control
sample. The sample consists of a mixture of unlabeled microspheres and reagent capture microspheres (BD Biosciences) loaded with FITC antibody. The arrow
in the third upper panel points out ‘‘picket fencing’’ in the 5.5-decade log display. The 80% and 64% on baselines designation includes events on the lower part
of either the horizontal or vertical axis. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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handled, and human hearing has a more-or-less logarith-
mic response to high signal values, so recording such
values to high resolution is not important. There are two
versions in use. The American one is the same as the offset
log described earlier. The European version uses the log-
linear splice approach, which is also discussed earlier.
These techniques, as defined, are not flexible enough to
deal adequately with flow cytometry data.

Hyperbolic sine functions with zero offset and scale
adjustment, but without the generalization and constraints
that yield the Logicle formulation, have been used to pro-
vide a variance stabilizing transformation for microarray
expression level data (6,7,8). This transformation (called
‘‘glog’’ by Munson) was found to be useful in making valid
tests for significance of gene expression changes, but it
was not investigated as a method for data display and vis-
ual interpretation. When used for data display, this trans-
formation behaves similarly to the log-linear splice, and
does not provide the kind of adjustment needed to opti-
mize visual interpretability.

We also investigated and rejected an approach that com-
bines the linear and logarithmic properties by adding to-
gether a linear function, an exponential function and a
constant, and then using the inverse function as a scale.
This functional form has subsequently been promoted by
Bagwell using the name Hyperlog (4). In regions where
the exponential term is large, the linear term is essentially
irrelevant and, conversely, when the exponential term is
small, the linear term dominates. This turns out to closely
approximate the behavior of the Logicle functions, and a
version similar to any given Logicle function can be
obtained by replacing the e2x term in the Logicle function

in Eq. (3) with a truncated power series expansion. The
expansion is given as follows:

e�x ¼ 1� x þ x2=2!� x3=3!þ . . . ;

using just the 1 2 x terms, we replace e2(x2w)/p with 1 2
(x2 w)/p in Eq. 3 and obtain

S1ðx;wÞ ¼ Te�ðm�wÞ

3 ðex�w � p2ð1� ðx �wÞ=pÞ þ p2 � 1Þ
or S1ðx;wÞ ¼ Te�ðm�wÞðex�w þ pðx �wÞ � 1Þ

for x � w ð8Þ

In Bagwell’s presentation (4), the corresponding equation
(unnumbered) uses b for p and y for x 2 w. Figure 7 com-
pares this function with the corresponding exponential,
linear, and Logicle functions. At x 5 w, it has the same
data value of zero and the same slope as the correspond-
ing Logicle function. However, it does not fulfill our criter-
ion that the second derivative should be zero at the data
zero, so that near zero it departs from linearity more
quickly than does the corresponding Logicle function.
Also, at the high end, it approaches true log more slowly
than the corresponding Logicle function. Therefore, we
did not consider it further.

CONCLUSIONS

We have reached several conclusions regarding the
effects of Logicle display on the quality of data interpreta-
tion and accuracy of statistical results:

1. Logicle display per se has no effect on statistical re-
sults, since these are computed on the underlying
data—not on the position of displayed events in
plots.

2. Similarly, use of Logicle displays cannot change the

overlap (or lack thereof) of different cell populations.
3. In many cases, use of Logicle transformation will

improve the validity of statistical results compared

to data analysis software which truncates low and

negative values outside displayed log or linear scale

ranges and, therefore, cannot compute correct sta-

tistics for populations including such data values.
4. Logicle displays help to confirm correct compensa-

tion in that the visual centers of positive and nega-
tive populations in single stain compensation con-
trols line up when compensation is correct. This is
not true in logarithmic displays.

5. Logicle displays may lead to better selection of
population boundaries (gates), and therefore im-
prove validity of results. Logarithmic displays dis-
tort broad, low-mean populations, to give a peak
above the true center of the distribution and pileup
of low to negative events at the scale minimum
(baseline). This can lead to improper, or at least
suboptimal, gate boundary selection. Logicle dis-

FIG. 7. Detailed comparison of Logicle and exponential-plus-linear dis-
play functions. The Logicle, exponential, and linear curves in this plot are
drawn from the same data shown in Figure 4, but only the display scale
range from 1 to 3 is shown here. The exponential 1 linear function was
chosen to match the Logicle function as well as possible, near zero and at
high values. The scale expansion allows the small differences between
the Logicle and Exp 1 Lin curves to be seen clearly. Note that both the
Logicle and exponential 1 linear functions have the same slope as the lin-
ear line at display scale 5 1 (signal level zero) and that the Logicle curve
stays somewhat closer to both the linear and log curves. Bagwell’s hyper-
log display function (4) is equivalent to the exponential 1 linear formula-
tion illustrated here. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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plays avoid this tendency by being nearly linear in
the region near zero.

6. Since Logicle scales go smoothly from linear to loga-
rithmic, they do not introduce artifacts that might
obscure real distinctions between populations or
give the impression of population distinctions that
are not real.

7. Logical transformed data is quite likely to be more
suitable than plain log or linear scaling for auto-
mated analysis, such as peak finding and cluster
analysis, since local distortions and edge pileups are
avoided or at least minimized.

8. The methods described here for automatically
selecting the Logicle width parameter to match par-
ticular data generally work well, but further work is
needed in this area to provide more flexible user
control of the transformation.

The Logicle scaling functions and Logicle display meth-
ods provide visualizations of flow cytometric data that are
readily interpreted by viewers and convey full and accu-
rate information regarding the underlying distributions of
the data and patterns of expression.
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