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Unraveling B-1 progenitors
James W Tung and Leonore A Herzenberg
B-1 cells comprise a small percentage of the B lymphocytes

that reside in multiple tissues in the mouse, including the

peritoneal and pleural cavities. Functionally, B-1 cells

participate in innate immunity by producing the majority of the

natural IgM in serum, which protects against invading

pathogens before the onset of the adaptive immune response.

B-1 cells arise from fetal and neonatal progenitors and are

distinct from the adult bone marrow progenitors that give rise to

follicular and marginal zone B-2 cells. Recent studies have

attempted to delineate the progenitors of B-1 cells from those

of B-2 cells. Notably, the identification of CD45R�/loCD19+ B-1

progenitors and expression of two surface determinants,

CD138 and major histocompatibility class II antigens,

distinguish developing B-1 cells from B-2 cells.
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Introduction
B-1 cells were originally identified as CD5+ B cells that

participate in autoimmunity, and share similarities with

those responsible for human chronic lymphocytic leukae-

mia [1,2]. Normally, B-1 cells make up about 1–5% of the

total B cells in the mouse. B-1 cells are found in a variety

of tissues including the spleen, peritoneal cavity, pleural

cavity and intestines [3]. The distinctive surface pheno-

type of B-1 cells features expression of higher levels of

IgM (sIgMhi) and lower levels of sIgD (sIgDlo) than that

of B-2 cells and, unlike marginal zone B cells, B-1 cells do

not express CD21 in the peritoneal cavity but express

CD21 at low levels in the spleen. Most of the B-1 cells,

but not all, in the peritoneal and pleural cavities express

CD11b — a macrophage/granulocyte marker that is part

of the CR3 complement receptor. However, the majority

of the B-1 cells found in the spleen do not express this

marker [3]. The B-1 cells in the peritoneal cavity are

divided between a majority subset (B-1a) and a minority

subset (B-1b), distinguished by the expression of CD5
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(i.e. B-1a cells are CD5+ whereas B-1b cells are CD5�)

[4].

Functionally, B-1 cells differ from B-2 cells in several

ways. The B-1 antibody repertoire tends to be more

restricted than the B-2 repertoire [5]. Furthermore, B-2

cells participate in the adaptive response by undergoing

somatic hypermutation of Ig genes, which leads to affinity

maturation of the antibody response. In contrast, B-1

(both B-1a and B-1b) cells are largely responsible for

the innate immune response and respond readily to a

variety of T-independent antigens [6,7]. In lipopolysac-

charide-stimulated animals, peritoneal B-1a cells respond

rapidly by migrating to the spleen, where they divide and

differentiate into IgM-producing plasma cells. B-1a cells

that are resident in the spleen, in contrast, differentiate

immediately to plasma cells without undergoing cell

division [8�]. B-1 cells normally express higher basal

levels of B lymphocyte induced maturation protein-1

(Blimp-1) than B-2 cells, which show roughly the same

Blimp-1 level as T cells (perhaps reflecting background

staining levels). However, similar to B-2-derived plasma

cells, Blimp-1 expression is highly upregulated in the

antibody-secreting B-1 plasma cells (CD138+) [8�,9,10].

In allotype chimeras in which B-2 cells derive from

progenitors marked with one IgM allotype (IgMb) and

B-1a cells derive from progenitors marked with a different

IgM allotype (IgMa), B-1a cells have been shown to be

the major producers of serum IgM natural antibodies that

provide the first line of defense against influenza virus

[11,12]. Similarly, B-1a cells have been shown to provide

the initial protection against Streptococcus pneumoniae
[13,14�]. B-1b cells have been shown to provide long-

term protection against S. pneumoniae in mice pre-immu-

nized with pneumococcal polysaccharide [13,14�] and to

be required for protection against Borrelia hermsii [15].

Numerous cell transfer studies have demonstrated that

fetal liver and adult bone marrow have different abilities to

reconstitute B-1 versus B-2 cells in irradiated recipients.

Hence, it was concluded that B-1 and B-2 cells constitute

distinct cell lineages. Co-transfers of B220� cells sorted

from fetal liver with B220� cells sorted from adult bone

marrow showed that, in the same adoptive recipients,

>90% of the B-1 are derived from the fetal liver source

whereas B-2 cells are derived from both sources [4].

Furthermore, pro-B cells (B220+CD43+IgM�) sorted from

fetal liver mainly gave rise to CD5+ (B-1a) cells, whereas

FACS-sorted (fluorescence-activated cell sorter) pro-B

cells from adult bone marrow gave rise to CD5� (B-2)

cells [16]. Thus, by the time B-cell progenitors (either fetal
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or adult) express B220 and initiate immunoglobulin (Ig)

heavy chain rearrangement, they are already intrinsically

committed to become either B-1 or B-2 cells.

These findings, together with evidence from a wide range

of additional and progenitor studies examining the origins

of B-1 and B-2 cells in genetically engineered and unma-

nipulated mice show that B-1 and B-2 cells arise from

distinct progenitors [17,18]. In addition, similar although

not as extensive evidence indicates that B-1a and B-1b

arise from different progenitors. Thus, these three phe-

notypically and functionally distinct B-cell subsets meet

the standard criterion for assignment into three separate

developmental lineages [4,19,20].

This finding led us to propose that the immune system is

composed of a series of layers that evolved sequentially in

response to complex and evolving antigenic challenges

[3,20]. We suggested that B-1a cells constitute the oldest

layer, whereas the layer including follicular B cells that

participate in high-affinity germinal-center based adap-

tive immune responses evolved most recently. The

existence of distinct progenitors for each of these

lineages is implicit in this model. Moreover, phenotypic

differences between progenitors and intermediate stages

of differentiation leading to each lineage should be

detectable.

Recent studies have focused on identifying differences

between the fetal liver/neonatal B-cell progenitors that

give rise to B-1 cells and the adult bone marrow progeni-

tors that give rise to B-2 cells. Furthermore, because B-1

progenitors (principally B-1b) have been found at low

frequencies in adult bone marrow [4], recent studies have

also focused on identifying and isolating this small popu-

lation of B-1 progenitors in adults. In this article, we

review the advances in distinguishing B-cell progenitors

and in recognizing differences between the B-cell devel-

opmental pathways in neonates and adults.

Identification of B-1 progenitors
The potential for B-cell lymphopoiesis can be observed in

the intra-embryonic para-aortic-splanchnopleura at day

8.5 of gestation [21]. These B-cell precursors can be found

in the para-aortic-splanchnopleura [22,23], yolk sac [24–

26], aorta-gonad-mesonephros [27] and placenta [28] in

the fetus. However, cytoplasmic IgM has been detected

in fetal liver around day 13 of gestation, and sIgM+ B cells

can be seen at day 17 of gestation [29–32]. Development

of B cells in fetal liver (largely B-1 cells) continues after

birth in neonates but gradually switches to adult B-cell

development, which becomes predominant at about the

time the animals are weaned [33]. For adult cell devel-

opment (largely B-2 cells), hematopoietic stem cells are

seeded in the bone marrow at day 15 of gestation, where

they later become the major B-cell development precur-

sors in adult life [34–36].
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The B-cell developmental stages are phenotypically

similar in fetal liver and adult bone marrow, although

some key differences have now been demonstrated.

Basically, in both fetal liver and adult BM, B-cell devel-

opment proceeds through the ‘Fr. B–F’ stages that Hardy

identified some time ago on the basis of the differential

expression B220, CD19, CD24, CD43, BP-1, IgM and

IgD expression [16,37]. However, current data suggest

that the expression of four surface markers (CD45R/B220,

CD19, CD138 and MHC class II) and several internal

proteins and transcription factors distinguishes the B-cell

lineage developments. The data that define the expres-

sion of these markers are still in the formative stages,

particularly with respect to differences between B-1a and

B-1b progenitors. In this regard, most of the information

has come from studies focused on comparisons of B-cell

progenitors isolated from fetal liver or adult bone marrow.

The following section summarizes the current status of

these data.

Internal markers
The expression of two genes, terminal deoxynucleotidyl

transferase (TdT) and the precursor lymphocyte regulated

myosin-light chain (PLRLC), distinguish between fetal

and adult pathways of B-cell development [38,39]. The

function of PLRLC is not known. However, evidence

indicating that PLRLC is induced by IL-7 is consistent

with evidence (discussed later) that IL-7 is not absolutely

required in B-1 development [40]. TdT, in contrast, is well

known to be required for N-region addition during immu-

noglobulin rearrangement. Thus, expression of TdT has

distinct implications for formation of the B-1 versus B-2

repertoire.

Reverse transcription-polymerase chain reaction (RT-

PCR) studies detected TdT in pro-B cells in adult bone

marrow, but showed that it is only present at low levels, if

at all, in fetal pro-B cells [38]. This lack of TdT expres-

sion during fetal B-cell development is expected to result

in B-1 cells that produce immunoglobulin heavy chains

and light chains that have little or no N-region addition.

Analysis of the B-1 repertoire of fetal and early neonatal

animals is consistent with this absence of TdT. However,

results from single-cell RT-PCR studies of FACS-sorted

peritoneal B-1 cells from adults demonstrate that �75%

of B-1 cells have N-region addition on either D-J or V-DJ,

or both joints in each cell [5]. As B-1 development

continues for 2–3 weeks after birth, these findings suggest

that, although TdT is not expressed during the fetal

period, it is likely to be expressed during neonatal B-1

development. If so, expression of TdT in neonatal B-1

cells is probably low in comparison with its expression in

adult bone marrow, because the average size of the N-

region in B-1 cells is smaller than that in B-2 cells.

Several nuclear factors also differ between B-1 and B-2

cells. B-1a development is dependent on the expression
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of NFATc1 [41]. In addition, peritoneal B-1a cells

express higher levels of activated STAT3 and lower

levels of CREB and PU.1 than B-2 cells [42–44]. Two

studies that utilized different methods to eliminate PU.1

expression in genetically engineered mice showed that

levels of B-2 cells decrease and ‘B-1-like’ cells increase

dramatically in the absence of PU.1 [45,46]. Interestingly,

however, one of these studies [46] concludes that the

observed changes in B-cell frequencies are probably

caused by ablation of B-2 cells with expansion of B-1-

like cells. The other study [45] concluded that these

changes are probably caused by forced reprogramming

during B-cell development, resulting in the conversion of

B-2 cells into B-1-like cells. Further studies are required

to resolve this issue.

Surface markers
The developmental stage at which the expression of

murine MHC class II (I-A/I-E) can be detected differs

markedly between the fetal/neonatal and adult B-cell

development pathways. Fetal pro-B and pre-B cells do

not express surface MHC class II until the B cells reach

maturity and are beginning to express IgD and CD5. In

contrast, MHC class II is clearly detectable on adult pro-B

and pre-B cells, albeit at lower levels than mature B cells

[33,47]. Studies that used this dramatic difference in

MHC class II expression to distinguish the fetal/neonatal

B-1 progenitors from the MHC class II-expressing B-2

progenitors demonstrated that B-1 development predo-

minates during the neonatal period, but is supplanted by

B-2 development by the time the animals are weaned

[33].

Recently, our laboratory has shown that a well-known

surface protein, CD138 (syndecan-1), also delineates fetal

B-cell development from adult B-cell development.

CD138 is a heparan sulfate-rich proteoglycan, the expres-

sion of which is commonly used to identify plasma cells or

antibody-secreting cells [48]. We have shown that pro-B

and pre-B cells in adult bone marrow clearly express

CD138, but that neonatal pro-B and pre-B cells do not

express this marker [49��]. In fact, CD138 is expressed

throughout B-cell development in adult bone marrow and

only shuts down expression at the end of the develop-

ment pathway (Fr. E, B220+CD43�IgM+IgD�/lo), coinci-

dent with high-level expression of sIgM [49��].

CD138 is currently the earliest known marker for dis-

tinguishing the adult (B-2) B-cell developmental pathway

from the fetal (B-1) developmental pathway. In adults,

CD138 is detected on very early B cells (Fr. B,

B220+CD43+CD24+CD19+BP-1�IgM�IgD�), well prior

to sIg expression, which initiates at the pre-B cell stage

(Fr. D, B220+CD43�IgM�IgD�). In addition, expression

of CD138 is highly likely to precede MHC class II

expression, as MHC class II is expressed on only a portion

of Fr. B cells whereas CD138 is expressed on nearly all Fr.
www.sciencedirect.com
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B cells. In any event, the expression of both CD138 and

MHC class II on early stage B cells in adult bone marrow

clearly distinguishes the (B-2) development pathway in

adult bone marrow from the (B-1) pathway that predo-

minates during fetal/neonatal life.

Recent FACS-sorting studies provide direct evidence

for the existence of distinct B-1 and B-2 progenitors.

B-2 progenitors express AA4+CD45R/B220+CD19�Lin�

(lineage�) and thus, as might be expected, fit within the

component of Fr. A that Hardy termed pre-pro-B cells

[37,50�]. In contrast, B-1 progenitors are AA4+CD45R�/

loCD19+Lin� [51��]. These cells do not fit into the standard

Fr. A definition because they are CD19+ and expression of

CD45R/B220 is lower than expected for Fr. A cells. The

low expression of CD45R on B-1 progenitors is perhaps not

surprising, as its expression on mature B-1 cells is roughly

three-fold lower than on B-2 cells. Expression of CD19,

which is typically not expressed until Fr. B, suggests a

difference in the initial development pattern of B-1 pro-

genitors. The differences in the expression of these mar-

kers might account for the previous difficulties in isolating

the small number of committed B-1 progenitors in adult

bone marrow. As proof that these cells constitute bona fide
B-1 progenitors, sorted AA4+CD45R�/loCD19+Lin� cells

gave rise in adoptive transfer experiments to a population

of B-1 cells that contain both B-1a and B-1b, whereas sorted

B-2 progenitors gave rise principally to B-2 cells [51��].
These committed B-1 progenitors, recognizable by the

above phenotype, can be seen as early as day 11 in fetal

liver and day 15 in fetal bone marrow [51��]. Similar cells

are present at low frequencies in adult bone marrow.

Studies using mice deficient in IL-7/IL-7R system (IL-

7�/�, IL-7Ra�/� or gc�/�) have shown that the devel-

opment of B-1 cells is less sensitive to perturbations in

the IL-7 cytokine system. In IL-7�/� mice [40], and in

mice in which signaling through IL-7 receptor is dis-

rupted (gc�/�mice) [52,53], B-2 development fails dras-

tically but B-1 development remains detectable. In

contrast, in IL-7Ra�/� mice, all B-cell development is

drastically decreased [54]. This difference is explained

by the ability of thymic stroma lymphopoietin (TSLP) to

support B-1 development in the IL-7�/� mice. This is

because the TSLP receptor, which contains the IL-7Ra

chain and is active in the IL-7�/� mice [55], enables

decreased but effective signaling that permits some,

although not all, B-1 development. The ability of TSLP

to support B-1 development is confirmed by studies

demonstrating that sorted B-1 progenitor cells from

the fetal and adult bone marrow expand and differentiate

in response to TSLP in vitro and provide long-term B-1

reconstitution in severe combined immunedeficiency

recipients [51��]. In contrast, sorted adult pro-B cells

responded poorly to TSLP in vitro. However, TSLP is

not an absolute requirement for B-1 development,

because B-1 cell numbers are not drastically affected
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Figure 1

The B cell developmental pathways. The model shows the phenotypes of cells at sequential stages of B-cell development in neonatal versus

adult bone marrow. The fetal/neonatal pathway is taken as indicative of the B-1 developmental pathway, because B-1 development predominates

in fetus and neonates. Similarly, the major adult bone marrow pathway is taken as indicative of B-2 development, because B-2 cells represent

the predominant output of adult bone marrow. The minor B cell developmental pathway shown in adult bone marrow is taken as indicative of

B-1b development, because adult bone marrow is known to contain a small number of progenitors for B-1b cells. Progenitor studies in adoptive

recipients are consistent with these assignments.
in TSLP�/� mice. It is probable that IL-7 supports B-1

development in the absence of TSLP.

Conclusions
We have proposed that the immune system evolved

sequentially in ‘layers’ that were progressively more

responsive to the ever-increasing pathogen challenge.

The B-1a, B-1b and B-2 lineages, with their specialized

functions to ensure survival of the species, stand at the

center of this layered immune system. The functional

differences between these lineages are well-established

[17]. However, the question of whether they derive from

unique progenitors, and thus can be designated as distinct

developmental lineages, has been discussed for some

time. This question has been resolved by the recent

demonstration that phenotypic differences distinguish

early B-1 progenitors from early B-2 progenitors. The

cell surface proteins CD138 and I-A distinguish early

stages in the B-1 developmental pathway from similar

stages in the B-2 developmental pathway.

The detection of committed progenitors to generate B-1

or B-2 cells in early B-cell development (Hardy Fr. B or

earlier) places the commitment event prior to surface m

expression (Figure 1). Thus, although antigen selection

has been evoked as a trigger of differentiation events

resulting in B-1 or B-2 cells, the differences between the
Current Opinion in Immunology 2007, 19:1–6
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lineages trace to events that occur well prior to antigen-

dependent stages of development. By contrast, antigen-

dependent selection can be expected to play a key role in

defining the differences in the repertoires that are ulti-

mately established in each of the lineages, particularly at

antigen-accessible sites within the spleen and peritoneal

cavity. Future studies are needed to determine how and

when these differences are established and what role (if

any) the differences in the B-cell development pathways

play in modulating the eventual lineage repertoires.
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