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The ability of flow cytometry to allow fast single cell interrogation of a large number of cells has made this technology ubiquitous
and indispensable in the clinical and laboratory setting. A current limit to the potential of this technology is the lack of automated
tools for analyzing the resulting data. We describe methodology and software to automatically identify cell populations in
flow cytometry data. Our approach advances the paradigm of manually gating sequential two-dimensional projections of the
data to a procedure that automatically produces gates based on statistical theory. Our approach is nonparametric and can
reproduce nonconvex subpopulations that are known to occur in flow cytometry samples, but which cannot be produced with
current parametric model-based approaches. We illustrate the methodology with a sample of mouse spleen and peritoneal cavity
cells.
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1. Introduction

Flow cytometry allows to measure simultaneously multi-
ple characteristics of thousands of cells. This ability has
made flow cytometry a prevalent instrument in both the
research and clinical settings. A major road block to
tapping the full potential of this technology is the lack
of data analysis methodology and software that allows for
an automated and objective analysis of the data generated
by this high-throughput instrument. One important part
of the analysis of flow cytometry data is gating, that is,
the identification of homogeneous subpopulations of cells.
The current standard technique for this type of analysis is
to draw 2D gates manually with a mouse on a computer
screen, based on the user’s interpretation of density contour
lines that are provided by software tools such as FlowJo
(http://www.treestar.com/) or BioConductor [1, 2]. The
cells falling in this gate are extracted and the process is
repeated for different 2D projections of the gated cells,
thus resulting in a sequence of two-dimensional gates that

describe subpopulations of the multivariate flow cytometry
data.

There are several obvious problems with this kind
of analysis. It is subjective as it is based on the user’s
interpretation and experience, it is error-prone, difficult to
reproduce, time consuming, and does not scale to a high-
throughput setting. For these reasons manual gating has
become a major limiting aspect of flow cytometry [3-5], and
there is a widely recognized need for more advanced analysis
techniques [6, 7].

There have been several recent attempts to produce
automatic and objective gates. Those employ the k-means
algorithm [8-10] or mixture models with Gaussian com-
ponents [11] or with t components and a Box-Cox trans-
formation [12]. A drawback of all of these methods is that
they produce necessarily convex subpopulations; whereas
occasionally subpopulations occur that are not convex and
are, for example, kidney shaped. Such subpopulations can
arise, for example, when two markers are added sequentially,



so that there is a developmental progression over time that
moves the subpopulation first in one direction and then in
another direction. The methodology introduced in this paper
is grounded in nonparametric statistical theory which allows
for such subpopulations.

We follow the paradigm that clusters of the data can
be delineated by the contours of high-density regions [13],
which is also the rationale that underlies manual gating.
We implement this paradigm algorithmically by constructing
a grid with associated weights that are derived by binning
the data. The purpose of this grid is twofold. It allows
for a fast computation of the density estimate via the Fast
Fourier Transform, and it provides for an economical but
flexible representation of clusters. We model each high-
density region by a collection of grid points. This collection
is determined algorithmically as follows. We establish links
between certain neighboring grid points based on statistical
decisions regarding the gradient of the density estimate. The
goal is to connect neighboring grid points by a chain of
links that follow the density surface “uphill.” The result of
this first processing stage is a number of chains that link
certain grid points and which either terminate at the mode
of a cluster or represent background that will not be assigned
to a cluster. In a second stage the algorithm will combine
some of these chains if statistical procedures indicate that
they represent the same cluster. The idea of following the
gradient uphill to determine clusters is motivated by manual
gating and is similar to a proposal by [14], which albeit
does not provide the statistical methodology required to
make decisions about nonzero gradients and combining
certain chains. Reference [15] gives a visual display of
gradients but no algorithm for finding clusters by linking the
gradients.

The end result of our algorithm is clusters that are
represented by chains that link certain grid points. This
representation has the advantage that it provides an efficient
data structure for visualizing and extracting the cells that
belong to a cluster. The chains that link grid points in a
cluster represent a tree structure which can be traversed
backwards to efficiently enumerate all grid points in the
cluster and hence to retrieve all cells in the cluster via their
nearest neighbor grid point.

2. Methods

2.1. Representing the Distribution on a Grid. Binning data on
a grid allows fast processing with little loss of accuracy [16].
The current software implementation of our methodology
works with successive 2D projections and we describe the
methodology in this setting, although the algorithm can be
generalized to work in higher dimensions from the start.
Thus we have n data points x; = (xj1,x2), i = 1,...,n.
To construct a grid we choose a positive integer M, typically
M = 128 or 256, and construct the grid consisting of M?
points as follows. Set A; = (max;x;; — minx;;)/(M — 1),
j = 1,2, and define the jth coordinate of y(u, m,) to be y,, =
min;x; j+(mj—1)A;, m; = 1,..., M. Then the grid is defined

as {Yimmy) : (m1,ma) € {1,...,M}*}.
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Next, each grid point ym, where m = (m;,m;) €
{1,...,M}?,is assigned a weight wy, by linearly binning [16]
the observations x;, that is,

xi,j - )’mj ‘
e 1
y ) M

The grid {ym,m € {1,... ,M}?} and the associated weights
{Wm,m € {1,... , M2} represent an approximation to
the cell distribution. Our software implementation allows
the user to choose various values of M. A larger choice
of M results in a finer grid and hence a more precise
approximation of the cell distribution at the expense of more
computing time. However, in accordance with the results in
[16], we found that a relatively small number of bins already
give an excellent approximation. Within a precision of 0.01%
of the total cell population we could not detect a change in
the outcome of gating small subpopulations when increasing
M from our default value of 256 to 512.

Our clustering algorithm described below uses only the
grid and the associated weights to derive the clustering
assignment. This assignment is then applied to cluster
observations x; as follows. Each observation x; is assigned to
the grid point yr, that is the closest to x; in Euclidean norm.
Then x; is assigned to the same cluster to which its associated
grid point yp, is assigned. Likewise, all observations assigned
to a certain cluster can be retrieved as follows. Find all
grid points ym assigned to the given cluster, then find all
observations x; that are assigned to these grid points.

n 2
Wm = anax(o,l -

i=1j=1

2.2. Computing the Estimate of the Cell Density. At each grid
point ym,m € {1,..., M3}?, an estimate of the density surface
f( ym) 1s computed as follows.

Denote by ¢(x) = 1//2mexp(—x?/2) the Gaussian
kernel. Then the estimated density at yn, is given by (see, e.g.,
[16])

Z L LA; i/l
= — Z Z Wm-1 X 1_[ ( ) (2)
ll, Zib=-2, J
where 1 = (I,1), Z; = min(|l4h;j/A;|,M — 1), and h; =
SD({xij,i = 1,...,n})n""%, where SD denotes standard

deviation. The above sum can be computed quickly with the
Fast Fourier Transform (FFT) in a well-known way [16], but
it can also be computed directly using the above formula
without the FFT.

2.3. Association Pointers between the Grid Points. First, for
each grid point we compute the standard error of the
corresponding density estimate and then label those grid
points as background whose density does not pass a certain
statistical threshold. The interpretation of this criterion is
that it tests whether the density is significantly different from
zero; see Step 1 for details.

Next we want to construct links between grid points that
follow the density gradient, that is, point “uphill” To this
end, we visit each grid point in turn and compare the density
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estimate on this grid point with those of its neighboring grid
points, of which there are at most eight. We establish a link
to that neighboring grid point that has the highest value of
the density estimate, provided that the difference in density
estimates is statistically significant (Step 2). Testing whether
the latter difference is nonzero is necessary as otherwise the
variability of the density estimate may lead to links that may
accidentally connect different clusters. Computationally we
implement links by way of the programming language data
type of a pointer.

Next we follow each chain to its end and determine
whether it represents a cluster or background (Step 3). Then
we determine whether two clusters need to be merged
because they are connected by a path that possesses no
statistically significant trough (Step 4). This is done by
iteratively building a set of grid points which are neighbors
to a local maximum of the density surface, are not maxima
or background, and do not exhibit a statistically significant
change in density when compared to the local maximum.
If this set in turn possesses a neighboring grid point that
is a local maximum, then we found a path (via this set)
between two local maxima that does not exhibit a statistically
significant trough. Consequently the last part of Step 4
merges the corresponding clusters by establishing pointers
to the grid point with the highest density. We iterate Step 4
until there are no more changes in the clusters (Step 5). It
can be shown that there will be only finitely many iterations.
Step 6 takes care of remaining points that are assigned
to the background. Thus the resulting number of clusters
is determined by the data via the statistical methodology
described previously.

Here is a more formal description of the various steps.
Step 1. Consider all grid points ym,m € {1,..., M}, in turn.
For each grid point y, compute

Z Zy
Om = n(n—l)lgzllzgzzwm_l
2 z(l h) 3
¢ (L;A;/h; 1 -
<=7 = = m)”
=1 j

n—1

Om is an estimate of the standard error of the estimated
density at ym. 02 can be computed with the FFT as above.

Define the index set § = {m € {1,...,M}? : f(ym) >

4.3 % \/%}. The factor 4.3 is an adjustment for multiple
testing over the grid and is obtained by calculations as in
[15]. Thus & is the set of grid points, where the density is
significantly different from zero. Grid points outside this set
are marked as background. From each grid point yy,, m ¢ 4,
a pointer is established that points to a dummy state that
represents background noise.

Step 2. For all grid points ym, m € 4, in turn.
Consider all the neighboring grid points pi,..., pu,,
which are defined as the set of all grid points contained in the

boxﬂ?zl{x:ymijj <xj < ymtAj}. Letp € {p1,..., pu,}

such that f(p) = max-i,_
arbitrary manner. Then estabhsh an assoc1at10n pointer from
ym to p provided the following two conditions hold:

f(p) > f(ym) and (a/ae)f(ym) > Am, Where e =
(p — ym)/llp — ymll, Il - |l denotes Euclidean norm, and
(d/ ae)f( ym) and A, are defined as follows:

a Zea Ym)

0 Zl Zz w lx_l“A“ﬁ¢<leJ/hJ)
aymu "=z, " he o h ’
Am = q(o.951/“)\/g,

#4 Zme%ﬁ Wm
n2nH§:1hj Smes f(ym)

L ( > eaeb[A -5ty )aym,,ﬂym)])

(lej/hj)
h? ’

o & l IyAgA
o Z Z Zzhz bn
M=z, a’tb

(4)

__ Hereej,e denote the standard Euclidean basis vectors.
32 is an estimate of the variance of (9/de)f(ym) and
q(0.95"%) is the normal distribution critical value adjusted
for multiple testing via «; see, for example, [15]. A is an
estimate of (0/0ym,) f(¥m)(0/0Ym,) f (¥m). q(x) denotes the
100 - xth percentile of the standard normal distribution. All
the sums can be computed with the FFT as above. Checking
that the derivative at yn, in the direction of p is significant,
rather than just linking ym to p, prevents an accidental
linking of different clusters. However, this approach may
result in not being able to establish links near the maximum,
where the density surface is flat. This is addressed by Step 4,
which merges such grid points.

Step 3. For all grid points ym, m € 4, in turn.

If a pointer originates at ymy, then it will point to
a different grid point, which itself may have a pointer
originating from it. This succession of pointers is followed
until one arrives at a grid point y, that either

(a) y, does not have any pointer originating from it, or

(b) y, has a pointer originating from it which points to a
dummy state that represents a cluster or background
noise.

In case (a) all the pointers visited in succession will be
removed and new pointers originating from each grid point
visited in succession will be established to the dummy state
that represents the background noise, provided the following
condition holds:
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FiGgure 1: Comparison of manual and DBM gating in the scatter dimensions—singlet gates are shown as determined by the researcher (top)
and DBM (bottom, colored plot frames) for neonatal mouse spleen cells. The subset is further gated using the researcher’s live/dead gate
and displayed in context of the next gating decision by the researcher. Note that the results of the DBM clustering are displayed with same
software that was used for the manual gating (FlowJo). This was done to facilitate the comparison and because a suitable display system for
publication has not yet been developed. Thus in the bottom left plot, color is used to code the clusters found by DBM.

F(y2) < q(0.957%)az2. (5)

Otherwise, provided there is a pointer into y,, then a new
pointer will be established that originates from y, and points
to a newly established dummy state that represents a new
cluster.

In case (b) no pointers are removed or established.

Step 4. Let {¥m(1)>--- Ym)} be the set of all grid points
which have a pointer originating from them to a dummy

state representing a cluster, enumerated such that f( Ym@1)) =
“ = f(Ym)-
Fori=1,...,k do the following.
Set A = {m(i)}. Iterate the following loop until no more
indices are added to #A:
(Begin loop)
For each index a € « in turn, add all the indices p to A
that satisfy

(i) yp is a neighbor of y, as defined in Step 2,

(ii) no pointer originates from yp,
(iiD) f(7p) +8p = fOma) ~ G

(End loop)
Denote by B the set of indices of grid points which satisfy the
following two conditions. The grid point possesses a pointer
originating to a dummy state representing a cluster, and the
grid point has some yp, p € # as neighbor. If B is not empty,
then do the following.

Define q by f( Yq) = maXe gf( ¥r), breaking ties
arbitrarily.

Establish a pointer from each yp,p € 4 \ {m(i)}, to yq.
For each r € B,r#q, remove the pointer from y; to
the dummy state representing a cluster and establish a new
pointer from yr to yq.
(End loop over 7)

Step 5. Repeat Step 4 until there are no more additions or
deletions of pointers to dummy states representing clusters.

Step 6. From each grid point that does not have a
pointer originating from it, establish a pointer point-
ing to the dummy state that represents the background
noise.

After Step 6 every grid point has a pointer originating
from it. Following the succession of pointers leads to a
dummy state which represents either background noise or
a cluster. All grid points which are thus linked to the same
dummy state pertain to the same cluster (or background
noise). Cluster memberships of observations x; derive from
the cluster memberships of the grid points as explained in
Section 2.1.

3. Results

We implemented the density-based merging (DBM) algo-
rithm in a Java application with a graphical user interface
that allows cluster visualization and sequential selection of
clusters to support progressive gating. To enable comparison
of DBM gating with data gated manually with a commer-
cial analysis package (FlowJo, http://www.treestar.com/), we
record cluster assignments for each event in association with
the original data. These values are used as synthetic gating



Advances in Bioinformatics

In scatter gate
250 4 223250

In live gate

200 4

150 A

100 1

50 4

Found by manual and DBM (K)

250 1 809
200 »;%‘

150 1

10° A
10% 1

103 1
100 1

Missed by DBM (K)

50 1071
O!

0 T T T T T

250 4 4291
200 -
150 “

4
100 1 f

50

=
@) 0 T T T T T
4 0 50 100 150 200 25

FSC-H (K)

Missed by manual (K)

F480+Gr-1

Figure 2: Differences in manual versus DBM gating in scatter
dimensions—cells included by both gates (top), cells included in
the manual gate and excluded by the DBM gate (middle), and
cells included in the DBM gate and excluded by the manual gate
(bottom) are displayed (column 1). Cells are live/dead gated as
described in the text, and shown in the context of the next manual
gating decision (column 2).

parameters in the commercial package, where we can directly
compare results.

Mouse spleen and peritoneal cavity cells harvested in
serum-containing medium were incubated on ice for 15
minutes with a 10-color staining combination. Data were
collected on an LSR IT (Becton Dickinson).

In the data shown in Figures 1-3, we replicate manual
gating decisions from a dataset previously analyzed by a
senior researcher using FlowJo. The researcher has sequen-
tially selected gates that progressively restrict the inclusion of
cells to ultimately encompass a known functionally distinct
subset. For each of these sequential manual gating decisions,
we select the corresponding cluster(s) defined by the DBM
algorithm. In our analysis, we thus reproduce the existing
workflow of the researcher, with the notable exception that
we use gating boundaries that are defined algorithmically.

Figure 1 (first column) compares the initial gating in the
forward-scatter area/height dimensions performed manually
(top) or with DBM (bottom). The research intention here
is to separate single cells from doublets and other debris.
Drawing the manual gate requires a great deal of experience

for a researcher to draw, owing to the lack of visual
differentiation between the overlapping populations. DBM
identifies two clusters that agree surprisingly well with the
manual gate: the red cluster contains 81% of the total events;
the corresponding expert gate contains 80% of the total
events; the overlap between the two gates is 98%.

Two views of the events encompassed by the clusters
are shown in columns 2 and 3 of Figurel. Column 4
shows further gating of the samples with the same manual
gate applied to the manually gated (top) and DBM gated
(bottom) data shown in columns 2 and 3. The similarity
of the yield from the manually gated and DBM gated
sample underscores the strong overlap between the two
samples.

In each case, a small percentage of the events captured
by one of the gating methods are excluded from the other
(Figure 2). Importantly we find that the DBM gate tends to
better capture the desired events then does the researcher’s
gate. We define desirable events as those included in the
subsequent gates that the expert set. The gate set by the expert
included fewer cells in the desired subset than the DBM gate,
resulting in a loss of desired cells (3474 cells). The expert gate
also included fewer cells outside the desired subset. However,
the additional “nondesired” cells included in the DBM gate
are not relevant since the expert has gated these out of the
subsequent analysis. Thus, in this situation, the DBM gate is
more successful than the expert gate.

In Figures 1 and 2, we analyzed the results of a single
DBM gate generated to match the first gate that the expert
applied in the gating series. Figure 3, which is based on a dif-
ferent dataset, compares results from three sequential gates
applied by the researcher with the comparable sequential
DBM gates. The researcher has chosen three sequential gates
(Figure 3, top): the first gate excludes doublets and debris;
the second gate excludes dead cells (bright PI); the third,
which yields a subset that is enriched for B cells (the target of
interest to the expert), excludes monocytes and macrophages
(CD11bbr, F4/80+GR-1br).

Applying the corresponding sequence of DBM clusters
results in a distribution (Figure 3, bottom) that is almost
indistinguishable from the distribution obtained with the
expert’s gates. The principal differences is a small increase in
the number of cells in the B cell subset desired by the expert,
and the inclusion of a small percentage of cells that lie near,
but not within, the B cell subset.

We view these results as extremely promising. We are
pleased that the DBM algorithm performed at least as well
than the expert in terms of identifying the subset of interest
in this study. We plan to perform future studies with more
diverse datasets to provide a more detailed investigation of
the performance of the DBM algorithm.

4. Discussion

Flow cytometry allows to separate cells into subsets for
further analysis. The potential of this technology is currently
limited by a lack of automatic and objective data analysis
and gating techniques. We introduced methodology and
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Figure 3: Comparison of manual and DBM gating for 3-step gating sequence—adult mouse spleen cells are analyzed using the researcher’s
manual gates (top plots) and the corresponding clusters identified by DBM (bottom plots with colored plot frames). Color is used to code
the clusters found by DBM in the first three plots on bottom. Each of the manual/DBM gate pairs has < 4% difference in total number of

cells. In this study, the researcher is interested in B cells (column 4).

demonstrated a software implementation that allows auto-
matic 2D gating that is based on statistical theory and hence
objective, reproducible, and fast. Typically, the automatic
gating takes only a fraction of a second. An important feature
of this methodology is that it is nonparametric and allows
for nonconvex gates, which current parametric methodol-
ogy with mixture models does not provide. Likewise, the
nonparametric statistical theory provides the information
necessary to decide on the number of populations in the
sample, which is known to be a difficult problem in the
context of parametric mixture models with no satisfactory
solution currently available.

We implemented our methodology in a sequential 2D
setting to automate the traditional manual gating. While
the methodology can in principle be implemented in a
higher-dimensional setting, there are also advantages to
stick with the traditional sequential procedure. First, many
users are familiar with the sequential gating procedure
and may be hesitant to work with the high-dimensional
output of a “black box,” which may be difficult to interpret.
Second, it is common practice to first project the data on
the forward light scatter (FSC) and sideward light scatter
(SSC) to distinguish basic cell types (e.g., monocytes and
lymphocytes) and to remove dead cells and cell debris.
Also, the user may have prior knowledge that leads her
to consider certain 2D projections or gating paths. These
aspects are readily incorporated in our implementation.
Third, sequential 2D gating allows for an informative and
straightforward visualization of the gating and the results.

We implemented our methodology in software called
ClusterGenie which we plan to be open source but dis-
tributed commercially. We demonstrated it on a sample
of mouse spleen and peritoneal cavity cells. Our results

compared favorably with expert gating of the data in
FlowJo. We plan a rigorous quantitative assessment of our
methodology in the near future.
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