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B-1a cells are primarily thought of as natural antibody-producing
cells. However, we now show that appropriate antigenic stimula-
tion induces IgM and IgG B-1a antibody responses and long-lived
T-independent antigen-specific B-1a memory that differs markedly
from canonical B-2 humoral immunity. Thus, we show here that in
the absence of inflammation, priming with glycolipid (FtL) from
Francisella tularensis live vaccine strain induces splenic FtL-specific
B-1a to mount dominant IgM and activation-induced cytidine de-
aminase-dependent IgG anti-FtL responses that occur within 3–5
d of FtL priming and fade within 1 wk to natural antibody levels
that persist indefinitely in the absence of secondary FtL immuni-
zation. Equally surprising, FtL priming elicits long-term FtL-specific
B-1a memory cells (IgM>>IgG) that migrate rapidly to the perito-
neal cavity and persist there indefinitely, ready to respond to ap-
propriately administrated secondary antigenic stimulation. Unlike
B-2 responses, primary FtL-specific B-1a responses and establish-
ment of persistent FtL-specific B-1a memory occur readily in the
absence of adjuvants, IL-7, T cells, or germinal center support.
However, in another marked departure from the mechanisms con-
trolling B-2 memory responses, rechallenge with FtL in an inflam-
matory context is required to induce B-1a secondary antibody
responses. These findings introduce previously unexplored vacci-
nation strategies for pathogens that target the B-1a repertoire.

B-1 | memory B cells | vaccine

B-1a lymphocytes mainly develop de novo during fetal/neo-
natal life and are maintained thereafter by self-replenishment

(1–3). Although they and their plasma cell progeny are well known
as natural antibody-producing cells, they are not commonly
viewed as participating antigen-stimulated antibody responses.
However, in this and a companion article (see ref. 4), we dem-
onstrate that immunization with a glycolipid (FtL) isolated from
Francisella tularensis live-vaccine strain (Ft LVS) readily induces
splenic FtL-specific B-1a to produce T-independent antigen-
specific IgM and IgG (IgM>>IgG) primary antibody responses,
to develop long-term antigen-specific memory, and to produce
secondary antibody responses when appropriately rechallenged
with the antigen. Strikingly, although the B-1a memory responses
that we identify share many of the properties of B-2 memory
responses, they nonetheless differ in key ways that make the B-1a
responses more suitable for the functional niche they occupy.
B-1 lymphocytes represent 1–5% of total B cells in adult mice.

They are the principal B cells in peritoneal (PerC) and pleural
cavities, are present at low but detectable frequencies in spleen
and intestine, and are very rare in bone marrow (BM) and lymph
nodes (1, 3). B-1a, which express low levels of CD5, predominate
among PerC B-1, but B-1b, which do not express CD5, are
present at much lower frequencies in the PerC (2, 3). Func-
tionally, B-1a are well known to produce natural antibodies (2,
5–8) and to up-regulate the antibody production in response to
Toll-like receptor (TLR) stimulation (9–11). Consistent with this
function, our recent studies show that stimulation with Salmo-
nella typhimurium LPS, a TLR4 agonist, nonspecifically induces
PerC B-1a to migrate to spleen, where they join with resident

splenic B-1a to augment polycolonal antibody production (10).
In addition, intranasal influenza infection has been shown to
induce B-1a migration, in this case to respiratory tract lymphoid
organs where, without undergoing clonal expansion, the migrants
produce IgM that includes virus-neutralizing natural IgM anti-
bodies (12).
These findings fuel the prevailing view that B-1a do not mount

antigen-induced antibody responses (13). However, B-1a are
clearly known to produce specific antibody responses to certain
antigens, including phosphorylcholine (14–16) and α1,3 dextran
(17, 18). Most recently, foreshadowing studies presented here,
we have shown that immunization with FtL, an atypical LPS iso-
lated from Ft LVS, induces B-1a with FtL-binding IgM receptors
to appear in spleen and to produce anti-FtL IgM primary anti-
body responses that protect against lethal Ft LVS challenge (19,
20). Consistent with B-1a mediating this protection, FtL priming
does not similarly protect Bruton’s tyrosine kinase (Btk)-mutant
(xid) mice, which have B-1b but lack B-1a (21–23).
In contrast, B-1b generate protective antibody responses and

provide long-lasting immunity against Borrelia hermsii infection
such that transferring sorted PerC B-1b from B. hermsii infected
mice intravenously to Rag1−/− mice confers long-term protection
(24). Confirming that B-1b rather than B-1a mediate this pro-
tection, B. hermsii immunization also protects the Btk-mutant xid
mice mentioned above, which lack B-1a (25). Thus, B-1a and B-
1b have distinct repertoires and response properties.
Studies here and in a companion article (4) together show that

the B-1a–mediated protection that FtL priming induces against
lethal Ft LVS challenge (19) is accompanied by induction of anti-
FtL B-1a primary responses and, importantly, by induction of
anti-FtL B-1a memory cells that persist indefinitely in PerC (but
not elsewhere) and remain ready to respond to FtL rechallenge
under appropriate conditions. Activation-induced cytidine de-
aminase (AID)-dependent isotype switching occurs during devel-
opment of a proportion of these FtL-specfic B-1a memory cells.
However, unlike B-2 memory, B-1a memory cells develop in the
absence of T-cell or germinal center (GC) influence. Further-
more, the induction of antigen-specific B-1a memory cells is
inhibited when the antigen is initially encountered in an in-
flammatory context but their production of secondary antibody
responses requires rechallenge with priming antigen presented in
just such a context (TLR4 stimulation). Collectively, these findings
open a view on previously unsuspected immune memory mecha-
nisms and thereby introduce previously unexplored vaccination
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strategies likely to be suitable for immunization with pathogen-
associated antigens that target B-1a repertoire.

Results
FtL Immunization Induces Antigen-Specific Isotype Switching and IgG
Plasma Cell Development in Splenic B-1a. In addition to inducing
IgM anti-FtL production (19), FtL priming induces anti-FtL
(FtL-binding Igκ+) B-1a in the spleen to undergo IgG isotype
switching and to differentiate to plasma cells producing either
IgG1 or IgG3 anti-FtL. Class-switched anti-FtL B-1a (including
plasma cells) account for roughly 20% of total anti-FtL B-1a in

spleen by day 5 after FtL priming (Fig. S1A); they express either
IgG1 or IgG3 receptor (Fig. S1A) but not IgG2a, IgG2b, IgE, or
IgA. Interestingly, IgG1 is expressed more in BALB/c mice than
IgG3, but IgG3 predominates in C57BL/6 mice.
The class-switched plasma cells in spleens from FtL-primed

animals are readily visualized as IgM–IgD– anti-FtL cells that
express a typical plasma cell phenotype (CD19+CD138+CD23–

CD5–). These cells arise slightly later (day 4, rather than day 3)
than IgM+ anti-FtL plasma cells, and increase until day 5. Then,
like their IgM counterparts, their numbers fall rapidly to below
FACS-detectability by day 7 (Fig. S1B).
Consistent with the plasma-cell development kinetics in spleen,

anti-FtL antibodies are not present in the natural antibody pool
before FtL immunization. Instead, after being induced and
reaching peak within 1–2 wk after FtL immunization, anti-FtL
antibodies ultimately fall and merge into the natural antibody
pool in FtL-primed mice. Thus, serum IgM and IgG anti-FtL
antibodies are barely detectable before FtL immunization, rise
quickly in FtL-immunized animals, and peak at days 5–7 for IgM
and days 10–14 for IgG (Fig. 1). Notably, long after primary re-
sponse resolves, both IgM and IgG anti-FtL persist indefinitely
(>70 d) at levels slightly above background (Fig. 1).
As the persistent low-level serum anti-FtL production would

predict, ELISPOT assays of spleen cells from long-term FtL-im-
munized animals reveal small numbers of plasma cells producing
anti-FtL IgM (∼2,000 per spleen) or IgG (IgG1+IgG3) (∼300 per
spleen) (Table S1). Of note, comparable analysis of BM from the
same animals do not reveal either IgM or IgG anti-FtL plasma
cells (Table S1), even though long-lived plasma cells originating
from GC responses typically reside in BM (26, 27). Therefore,
these anti-FtL antibody-secreting cells in spleen provide the sole
source for the sustained low-level production of anti-FtL anti-
bodies that we detect in serum from FtL-immunized animals.

Antigen-Induced Isotype Switching in B-1a Requires AID; T Cells and
GCs Are Not Required. Primary IgM anti-FtL responses are com-
parable in WT, T-cell–deficient (TCRβ−/−δ−/−), and AID−/− mice
(Fig. S2). As expected, IgG anti-FtL response fails in AID−/− mice
(Fig. 2A). Consistently, AID expression is induced in anti-FtL B-1a
cells (Fig. 2B). These findings demonstrate that FtL-induced iso-
type switching in B-1a requires AID. However, neither T-cell help
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Fig. 1. FtL priming establishes persistent long-term production of serum
IgM and IgG anti-FtL at natural antibody levels. IgM and IgG anti-FtL levels
measured in sera fromWT (BALB/c) and syngenic mutant (Rag1−/− and AID−/−)
mice primed with FtL or injected with PBS, as indicated. Each dot represents
a single mouse; n = 5 per group. Horizontal lines in “quartile box plots”
indicate the 25th, median, and 75th percentiles. The dashed line shows
background levels (Rag−/− and AID−/− sera). Values are expressed as micro-
liter equivalents of a standard serum pool from 5-d FtL primed BALB/c mice
(Fig. S1 shows FACS data).
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Fig. 2. FtL-induced isotype switching in anti-FtL B-1a requires AID but occurs without T-cell help or GC support. (A) Live FtL-binding Igκ+ cells from spleen of
C57BL6/J, TCRβ−/−δ−/−, and AID−/− syngenic mice 5 d after FtL immunization were gated to reveal CD138 and IgG expression. Boxes show IgG+ CD138− and
IgG+CD138+ plasma cells. One of four experiments is shown. (B) AID and BCL6 expression in sorted anti-FtL B-1a (CD138–) and anti-FtL plasma cells (CD138+)
from spleen of day 5 FtL-primed C57BL6/J mice. Data for each gene is shown as fold-change relative to expression level (dashed line) in PerC B cells from
nonimmunized mice. Each dot represents data for 100 sorted cells of each subset, n = 6. One of three experiments is shown.
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nor GC formation is required for these responses. Thus, anti-FtL
IgG responses proceed normally in TCRβ−/−δ−/− mice (Fig. 2A).

GL7, a GC marker (27, 28), is not detected on the anti-FtL B-1a
(CD138–). Furthermore, anti-FtL B-1a disappear from the spleen
within 1 wk of immunization (19), clearly before the time when
GC usually starts developing (27–30). Finally, B-cell lymphoma 6
(BCL6) up-regulation, a hallmark for GC B cells (26, 31, 32), is
not detected on anti-FtL B-1a (Fig. 2B). Consistent with its down-
regulation on plasma cells (33), BCL6 expression is turned off in
anti-FtL plasma cells (CD138+) (Fig. 2B).

Anti-FtL Primary Responses Require Btk but Not IL-7. Although B-2
development fails entirely in IL-7−/− mice, substantial numbers
of B-1a develop and are readily detectable in adult spleen and
PerC (34, 35). Similar to WT mice, immunizing IL-7−/− mice with
FtL induces the development of splenic anti-FtL B-1a
(CD5+B220low) and anti-FtL plasma cells (CD5–B220–CD138+)
(Fig. 3 and Fig. S3A). Isotype switching also occurs normally (Fig.
S3B) and serum anti-FtL IgM levels rise after FtL priming (Fig.
S3C). However, the overall anti-FtL titers are about four-times
lower than that in WT mice (Fig. S3C), which likely reflects the
smaller spleens and the consequently lower numbers of anti-FtL
B-1a in IL-7−/− mice (Table S2). These data suggest that IL-7 is
not (or minimally) required either for the development of anti-FtL
B-1a or for their responsiveness to FtL immunization.
As expected, B-1a anti-FtL responses fail entirely in xid mice,

which lack functional Btk and show lack of B-1a (21, 22). Thus,
FtL immunization of xidmice does not result in expanded anti-FtL
B-1a (<0.01% of splenic and PerC B cells) and does not induce
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Fig. 3. FtL immunization induces splenic anti-FtL B-1a responses in IL-7−/−

mice. Live splenic CD19+ B cells from IL-7−/− mice injected with PBS or im-
munized with FtL for 3–4 d were gated to reveal FtL-binding Igκ+ B cells
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cells, >95% of which are CD5+. (For serum responses, see Fig. S3C).
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production of serum anti-FtL. This response failure is consistent
with our previous demonstration that FtL immunization of xidmice
does not protect against subsequent lethal Ft LVS challenge (19).

Spleen, Not PerC, from Naïve Animals Contains Cells That Give Rise to
Adoptive Primary Anti-FtL B-1a Responses. Intravenous transfers of
spleen cells from naïve donors to naïve allotype-congenic re-
cipients results in the appearance of donor anti-FtL B-1a in re-
cipient spleen (and PerC) shortly after the recipients are
challenged with FtL (Fig. 4). However, similar transfers of 107

PerC cells harvested from one to two naïve donors give rise to
minimal numbers of donor anti-FtL B-1a (Fig. 4). Consistent
with these findings, donor anti-FtL antibody titers rise signifi-
cantly in the serum of FtL-challenged recipients transferred with
naïve donor spleen but not naïve donor PerC (Fig. 4). Thus,
although we have shown that FtL priming triggers the appear-
ance of anti-FtL B-1a in the PerC and spleen at approximately
the same time in animals (day 3) (19), only the spleen from naïve
animals contains cells that can give rise to primary anti-FtL
responses in adoptive recipients.

PerC, Not Spleen, Is the Long-Term Reservoir for Anti-FtL B-1a in FtL-
Primed Animals. Like anti-FtL B-1a in spleen, all of the anti-FtL
B-1a in PerC express IgM at day 3 after FtL priming (Fig. 5A); by
day 5, roughly 12% of anti-FtL B-1a in PerC have switched to
IgG1 or IgG3 (Fig. 5 A and B). After 1 wk, however, the majority
of anti-FtL B-1a disappear from the spleen (19), leaving the
PerC as the long-term reservoir of these cells in primed animals
(Fig. 5). Of note, although most of anti-FtL B-1a in the PerC
have divided at least once (>90% BrdU+) at day 5, their cell
division rate drops precipitously (i.e., about 20% are BrdU+ at
day 7 but <5% are BrdU+ at day 15) (Fig. S4). Thus, after the
initial FtL-induced expansion, anti-FtL B-1a cells exit the cell
cycle and persist in the PerC as quiescent cells in the absence of
further antigenic stimulation.
Overall, the frequency of anti-FtL B-1a that appear in the PerC

rises from undetectable (<0.01%) before FtL priming
to a persistent 3–5% of total PerC B cells (Fig. 5 B and C). These
cells express the typical PerC B-1a phenotype (CD5+CD43+

CD11b+B220low) (Fig. S5) and dominantly express IgM (Fig. 5B).
Similar findings with FtL-primed IL-7−/− and TCRβ−/−δ−/− mice
(Fig. S6) demonstrate that neither IL-7 nor T-cell support is
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required for the development or persistence of anti-FtL B-1a cells
in PerC.
Importantly, despite their initial dividing and later quiescent

persistence in PerC, anti-FtL B-1a cells do not differentiate to
plasma cells at this location. Thus, ELISPOT does not reveal
anti-FtL secreting cells in PerC from primed animals, even
though such assays do reveal tiny numbers of anti-FtL plasma
cells in spleen long after the primary response resolves (Table
S1). Furthermore, PerC from FtL-immunized animals does not
contain FACS-detectable anti-FtL plasma cells, defined as either
CD138+ cells or cells containing intracellular Ig (Fig. S7).

Priming with FtL in an Inflammatory Context Decreases, Rather than
Augments, the Primary Anti-FtL Response. Monophosphoryl lipid A
(MPL) is well-known as a TLR4 agonist that readily induces
inflammation (36, 37). It is commonly delivered with priming
antigens as an adjuvant to enable/increase primary antibody
responses (37, 39). Surprisingly, however, priming naïve animals
with FtL plus MPL substantially dampens the anti-FtL primary
responses and dramatically decreases the development of anti-
FtL B-1a cells in the PerC (an index of memory cell generation;
see companion article, ref. 4) (Fig. 6 and Fig. S8). Thus, adding
this inflammation-inducing stimulus during FtL priming is
counterproductive for anti-FtL primary responses.

Discussion
The FtL-induced robust primary responses demonstrated here
introduce key roles for B-1a in protective immunity and the
production of “natural” (i.e., innate) antibodies in serum. Our
findings demonstrate that B-cell receptor stimulation with a gly-
colipid (FtL) isolated from Ft LVS specifically triggers splenic
FtL-binding B-1a to proliferate and, in a small proportion (about
15%), to undergo AID-dependent class-switching. These anti-
gen-triggered events, which occur in the absence of accompa-
nying adjuvant, T-cell support, or GC influence, result in the
establishment of anti-FtL B-1a memory cells that migrate rapidly
to the PerC and persist there indefinitely as a largely quiescent
population in the absence of further antigenic stimulation.
We have also shown that FtL priming induces brief but robust

development of anti-FtL B-1a plasma cells (IgM>>IgG) in
spleen, but not in BM. These plasma cells largely disappear with
a week of priming, although a few remain detectable as func-
tional anti-FtL–secreting cells for months thereafter (essentially
indefinitely). Consistent with these findings, the initial primary
anti-FtL B-1a response is readily detectable in serum for 1–2 wk
after FtL priming but fades rapidly thereafter to characteristic
natural antibody levels that persist indefinitely as such in serum.
The anti-FtL B-1a memory cells (IgM>>IgG) that migrate to

the PerC persist there as essentially quiescent cells similar in
phenotype to the bulk of the B-1a in PerC. They do, however,
divide occasionally, apparently as needed to replenish their num-
bers and feed the tiny persistent population of splenic anti-FtL–
secreting cells that in turn feeds the serum anti-FtL pool. Thus, by
likely analogy, B-1a memory emerges as the source of much of
what is commonly referred to as “natural antibody” in serum.
In an accompanying article (4), we show that the typically qui-

escent anti-FtL B-1a memory cells in the PerC divide extensively
and express a unique set of activation-associated signatures in re-
sponse to FtL rechallenge. However, the FtL rechallenge must be
administered in an inflammatory context (e.g., stimulation with a
TLR4 agonist) to induce the migration of the PerC-based memory
cells to the spleen and differentiate there to anti-FtL secreting cells.
Thus, our findings suggest that initial encounter with a pathogen-
associated antigen (e.g., FtL) under noninflammatory conditions
establishes long-term low-level B-1a production of natural anti-
bodies sufficient to provide a preexisting defense against a low level
of pathogen re-encounter. To back up this minimal defense, the
initial antigen encounter also induces long-term FtL-specific B-1a
memory capable of rapidly ramping up anti-FtL production
whenever the antigen is re-encountered in association with TLR4-
stimulated or similar inflammation.

Materials and Methods
The methods for FACS staining, ELISPOT, real-time quantitative RT-PCR, se-
rum anti-FtL antibody analysis, and the methods used for the cell transfer
studies are all described in a companion article (see companion article, ref. 4),
in which the same materials and methods are used. All of the animal ex-
periment protocols are approved by Stanford Animal Care Review Board.
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Fig. S1. Glycolipid (FtL) immunization induces splenic anti-FtL B-1a to undergo isotype switching and differentiation to IgG1 or IgG3 plasma cells. (A) Live FtL-
binding Igκ+ cells from spleen of BALB/c mice 5 d after FtL immunization gated to reveal IgG (IgG1 or IgG3) and CD138 expression. Gating strategy for splenic
FtL-binding Igκ+ population is shown in ref. 1. Black and gray boxes show IgG+CD138– and IgG+CD138+ plasma cells, respectively. Data represent one of four
experiments with similar results. (B) Live splenic plasma cells (CD19+CD23–CD138+) from BALB/c mice injected with PBS or immunized with FtL for indicated days
were gated to reveal anti-FtL plasma cells (circled population, Upper). The amount of FtL bound to the cells is proportional to the surface κ-light chain levels
and hence is revealed as a tight “diagonal” population. Surface IgM and IgD levels on anti-FtL plasma cells distinguish class-switched plasma cells (IgM–IgD–)
from nonswitched plasma cells (IgM+) (Lower).
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Table S1. Numbers of IgM and IgG anti-FtL secreting cells in tissues of BALB/c mice detected by ELISPOT

BALB/c (n = 5) tissue

PBS FtL prime (day 5) FtL prime (>2 mo) FtL boost (day 5)

IgM IgG1+IgG3 IgM IgG1+IgG3 IgM IgG1+IgG3 IgM IgG1+IgG3

Spleen <1/107 9.1 × 104 ± 0.7 5 × 103 ± 2 1.9 × 103 ± 0.1 2.9 × 102 ± 0.9 1.7 × 103 ± 0.5 1.8 × 102 ± 0.5
Bone marrow <1/107

PerC <1/107

Values represent means ± SE.

Table S2. Number of anti-FtL B-1a cells in spleen of C57BL6/J or
IL-7−/− mice

Mouse strain PBS

FtL immunization

Day 3 Day 4 Day 5

C57BL6 (n = 4) 1.9 ± 0.4 4.4 ± 1.1 8.7 ± 0.9 12.5 ± 1.3
IL-7−/− (B6) (n = 4) 0.2 ± 0.1 0.7 ± 0.1 1.4 ± 0.5 1.3 ± 0.6

Values represent means ± SE × 104.
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