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Abstract

Background: Celastrol, an active compound extracted from the root of the Chinese medicine ‘‘Thunder of God Vine’’
(Tripterygium wilfordii), exhibits anticancer, antioxidant and anti-inflammatory activities, and interest in the therapeutic
potential of celastrol is increasing. However, described side effects following treatment are significant and require
investigation prior to initiating clinical trials. Here, we investigated the effects of celastrol on the adult murine
hematopoietic system.

Methodology/Principal Findings: Animals were treated daily with celastrol over a four-day period and peripheral blood,
bone marrow, spleen, and peritoneal cavity were harvested for cell phenotyping. Treated mice showed specific impairment
of the development of B cells and erythrocytes in all tested organs. In bone marrow, these alterations were accompanied by
decreases in populations of common lymphoid progenitors (CLP), common myeloid progenitors (CMP) and megakaryocyte-
erythrocyte progenitors (MEP).

Conclusions/Significance: These results indicate that celastrol acts through regulators of adult hematopoiesis and could be
used as a modulator of the hematopoietic system. These observations provide valuable information for further assessment
prior to clinical trials.

Citation: Kusy S, Ghosn EEB, Herzenberg LA, Contag CH (2012) Development of B Cells and Erythrocytes Is Specifically Impaired by the Drug Celastrol in
Mice. PLoS ONE 7(4): e35733. doi:10.1371/journal.pone.0035733

Editor: Christian Schulz, Heart Center Munich, Germany

Received October 14, 2011; Accepted March 20, 2012; Published April 24, 2012

Copyright: � 2012 Kusy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was funded by grants from the National Institutes of Health (CA49605 and AI076434). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: CC is a founder of Xenogen Corp., now part of Caliper LifeSciences. This does not alter the authors’ adherence to all the PLoS ONE policies
on sharing data and materials. All other authors have declared that no competing interests exist.

* E-mail: skusy@stanford.edu

Introduction

Tripterygium wilfordii, an ivy-like vine also known as the ‘‘Thunder

God Vine’’, has been used as natural medicine in China for

hundreds of years [1]. Celastrol, a quinone methide triterpenoid,

was identified to be one of its active components. As root extract or

purified compound, its remarkable anti-inflammatory ability has

been demonstrated in animal models of different inflammatory

diseases including asthma [2], Crohn’s disease [3], and neurode-

generative disorders [4,5]. Purified celastrol showed anticancer

activity, in vivo in various tumor models of melanoma [6], prostate

[7] and breast [8] cancer, as well as in vitro on leukemic cell lines

[9,10,11], suggesting its use as a cancer therapeutic.

However, multiple side effects have been reported, including

leukopenia, thrombocytopenia and anemia [12]. These adverse

reactions are transient and recovery is usually complete upon

removal of the drug. The molecular bases of the therapeutic and

side effects are not well understood. Therefore, to advance

celastrol as a therapeutic and prevent side effects, its toxicity and

mechanism of action need to be revealed.

In the present study, we investigated the effects of celastrol on

the hematopoietic system of adult mice with the aim of describing

the immediate effects of celastrol on different mature and

progenitor hematopoietic cell populations. We observed significant

alterations of stem cells, progenitors and fully differentiated cell

populations in peripheral blood (PB), bone marrow (BM), spleen

and peritoneal cavity (PerC). These data indicate significant

hematotoxicity, and suggest differential effects of celastrol on

specific hematopoietic subsets. Understanding these effects will

better enable the use of this potential therapeutic agent and will

identify new clinical applications.

Materials and Methods

1- Mice and chemical treatment
BALB/c mice, 8- to 10-weeks-old, were purchased from

Jackson Labs. All mice were maintained in the Animal Facility at

Stanford University School of Medicine. All experiments were

conducted under strict adherence to institutional guidelines, as

approved by the Animal Care and Use Committee at Stanford

University (aplac #12323). Mice received daily intraperitoneal

(IP) injections (200 mL) of either celastrol (Cayman Chemical,

purity $ 98%) diluted solutions (0.01, 0.1, 1 or 5 mg/kg/day), or
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carrier only (PBS with 5% DMSO) as a control, over the course

of four days.

2- Tissue preparation and flow cytometry
Tissues were harvested the day following the last injection as

previously described [13]. Cells were counted and stained with

antibodies for phenotyping. For mature population analyses, cell

suspensions were preincubated with anti–CD16/CD32 mAb to

block FccRII/III receptors and stained with the following

fluorochrome-conjugated mAb: FITC-labeled anti-CD71; PE-

labeled anti–Ter119, PECy5-labeled anti-CD5; PECy5.5-labeled

anti-CD19; PECy7-labeled anti–IgM; APCCy5.5-labeled anti-

IgD; APCCy7-labeled anti-CD11b and Pacific Blue–labeled anti–

Gr-1, and Violet Green-labeled LIVE/DEADH. For progenitors

analyses, cells were stained with FITC-labeled anti-CD34, PE-

labeled anti–Sca1, APC-labeled anti-c-Kit, PECy7-labeled anti-

Il7Ra, APCCy7-labeled anti-CD16/32 and PerCPCy5.5-labeled

lineage antibody cocktail. Antibodies were either purchased

(Invitrogen and BD) or conjugated in the Herzenberg laboratory.

Cells were analyzed on LSRII (BD). Data were analyzed with

FlowJo software (TreeStar). In the carrier only treated-animals

(PBS with 5% DMSO) there were no detectable changes in the

levels of CD expression.

3- Statistical analyses
Quantitative data are expressed as the mean 6 SEM. Statistical

significance was assayed using a non-parametric Mann Whitney

test (n = 10 mice. *p,0.05; **p,0.01; ***p,0.001).

Results and Discussion

1- Changes in peripheral blood parameters in celastrol
treated-mice

To investigate the effects of celastrol on the hematopoietic

system, mice received daily IP injections (0.01, 0.1, 1 or 5 mg/kg/

day) over the course of 4 days, and tissues were harvested the day

Figure 1. Changes in peripheral blood parameters and cellularity in celastrol treated-BALB/c mice. (A) Peripheral blood parameters in
celastrol treated-mice. Mice received four consecutive daily IP injections of DMSO 5% or various concentrations of celastrol (0.01, 0.1, 1 or 5 mg/kg/
day). Peripheral blood was harvested the day following the last injection. Values are percent of control. RBC: red blood cells; HGB: Hemoglobin; HCT:
hematocrit; WBC: white blood cells. Mean 6 SEM, n = 10. (B) Cellularity in control and celastrol treated-mice. Mice received four consecutive daily IP
injections of DMSO 5% or celastrol (5 mg/kg). Cells from bone marrow (1 femur+1 tibia), spleen and peritoneal cavity were harvested the day
following the last injection. Mean 6 SEM, n = 10.
doi:10.1371/journal.pone.0035733.g001
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following the last injection. Analysis of PB revealed similar counts

of red blood cells and similar levels of hemoglobin and hematocrit

in mice treated at all concentrations of celastrol, compared with

control mice treated with 5% DMSO (Figure 1A). Mice treated

with the highest concentration of celastrol showed signs of toxicity

with hunched posture and ruffled fur. These mice appeared to

have more total white blood cells than did control mice, although

it was not statistically significant (n = 10; p.0.05) (Figure 1A). This

data indicated that we should further analyze mice treated with

celastrol at 5 mg/kg/day.

2- Celastrol treatment results in multiple defects in
mature lineages

We then examined the distribution of the different PB

hematopoietic lineages using flow cytometric analysis and

specific cell surface markers. The percentages shown correspond

to raw data numbers. FACS analysis revealed dramatic

alterations in the lymphoid, myeloid and erythroid populations

following celastrol treatment (Figure 2A), in agreement with

previous studies describing aplastic anemia in patients treated

with extracts of T. wilfordii [14], and blood defects in zebrafish

embryos exposed to pure celastrol [15]. Lymphoid markers

indicated that blood from celastrol treated-mice contained fewer

total T lymphocytes (CD5+) (2.8-fold; *p,0.05) with no apparent

change in the total B lymphocyte population (CD19+).

Interestingly, celastrol induced a significant decrease in the

number of immature B and B-1 cells (6.7-fold; ***p,0.001) with

a modest increase in the mature B cell population (1.2-fold;

**p,0.01) (Figure 2A). Among the remaining ‘‘non-T’’ and

‘‘non-B’’ PB cells, the cell size combined with staining for Gr-1

and CD11b myeloid markers indicated a significant increase of

the neutrophils (5.2-fold; ***p,0.001) and a slight increase of the

eosinophils (1.7-fold; **p,0.01) (Figure 2A). This may be a

consequence of an inhibition of the infiltration of inflammatory

cells into tissues since celastrol has been previously shown to

reduce the total number of inflammatory cells in peribronchial

areas in a mouse asthma model [2]. The immature red cells,

identified by the staining intensities of anti-Ter119 and -CD71

surface markers, were present but at an extremely low level

(Figure 2A). These effects were transient, as recovery was

complete four weeks after removal of the drug (data not shown).

The alterations affecting the development of B cells and

erythrocytes were also found in BM as well as in spleen and PerC

(Figure 2B and 2C). In the PerC, the B-1 population [13] was

highly affected (13.5-fold decrease; ***p,0.001) (Figure 2B).

Celastrol did not appear to be directly cytotoxic in our study,

as we did not observe decreases in the cellularity in any of the

tested organs (Figure 1B). This is in agreement with a study

describing no decrease in cell viability and no evidence of

increased apoptosis of CD34+ human BM cells treated with

extract of T. wilfordii [16]. Moreover, using colony-forming cell

assays, it was demonstrated that the extracted compound directly

blocks the ability of very early human hematopoietic multi-

lineage, as well as lineage-specific committed, human hemato-

poietic progenitor cell to respond to growth factors and form

colonies [16]. Thus we anticipate that the erythrocytic and B-

lymphoblastic suppression described in our present study may be

Figure 2. Celastrol treatment results in multiple defects in mature lineages. (A) Representative FACS analysis of mature lineages from
peripheral blood of control (left) and celastrol treated-mice (right). Mice received four consecutive daily intraperitoneal injections and peripheral
blood cells were harvested the day following the last injection, processed and analyzed as described in Materials and Methods. The percentages
shown correspond to raw data numbers. Data shown are representative of 10 mice. (B) Representative FACS analysis of total B cells (gated as LIVE/
DEAD+, CD52, CD19+, and analyzed for IgD and IgM expression) from bone marrow, spleen and peritoneal cavity of control (left) and celastrol
treated-mice (right) (n = 10). FACS-analysis of the different sub-populations of B lymphoid progenitors was performed as described [13,20]. MZ B cells:
Marginal Zone B cells. (C) Representative FACS analysis of total red cells (gated as LIVE/DEAD+, CD52, CD192, CD11b2, Gr-12, SSC-Alow and analyzed
for CD71 and Ter119 expressions) from bone marrow, spleen and peritoneal cavity of control (left) and celastrol treated-mice (right) (n = 10). FACS-
analysis of the different sub-populations of red cell progenitors was performed as described [21,22].
doi:10.1371/journal.pone.0035733.g002

Figure 3. Celastrol treatment results in multiple defects in BM progenitors. Representative FACS analysis of Megakaryocyte-Erythrocyte
Progenitors (MEP), Common Myeloid Progenitors (CMP), Granulocyte-Monocyte Progenitors (GMP), LSK CD342 (Lin2 Sca-1+ c-Kit+ CD342) cells and
Common Lymphoid Progenitors (CLP) from bone marrow of control (left) and celastrol treated-mice (right) (n = 10). Cells were harvested from animals
treated as described in Figure 2 and percentages shown correspond to raw data numbers. FACS-analysis of the different sub-populations of
multipotent progenitors was performed as described [23].
doi:10.1371/journal.pone.0035733.g003
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due to a loss of B and red cell regenerative potential from

pluripotent cells exposed to celastrol.

3- Celastrol treatment results in multiple defects in bone
marrow progenitors

Therefore, we examined the distribution of the different

progenitors in the BM from celastrol treated-mice (Figure 3). We

observed a 1.3-fold increase in the number of LSK CD342 cells

(Lin2 Sca1+ c-Kit+ CD342), when compared to control mice

(**p,0.01). We also showed decreases in the number of Common

Myeloid Progenitors (CMPs) (2-fold; **p,0.01) and Megakaryo-

cyte-Erythrocyte Progenitors (MEPs) (1.7-fold; **p,0.01), whereas

the number of Granulocyte-Monocyte Progenitors (GMPs)

increased (1.8-fold; **p,0.01). This suggests a potential priming

of celastrol-treated CMPs towards GMPs. Finally, the number of

Common Lymphoid Progenitors (CLPs) was significanly decreased

(17-fold; ***p,0.001) after celastrol treatment.

These results show that celastrol specifically impairs the

development of B cells and erythrocytes in PB, BM, spleen and

PerC. Thus, a potential use of the drug could be to modulate the

hematopoietic cell subsets, by treating cells ex vivo prior to

adoptive transfer, or by treating donors prior to collection and

purification of cells. Additional studies are needed to determine the

kinetics of these effects, and to identify the proper dose of celastrol

for each type of cell to be modulated.

The molecular mechanism underlying the effects of celastrol on

the hematopoietic system is not well understood. One explanation

may be the inhibition of Nuclear Factor-kappa B (NF-kB)

pathways by celastrol [2]. A complete understanding of NF-kB

signaling in erythropoiesis is not completely defined, but a role for

NF-kB family members, including p105/p50, p100/p52 and p65,

has been suggested [17,18]. Moreover, genetic studies show that

the different NF-kB proteins are important at different stages of B

cell maturation [19]. Inhibition of NF-kB is a strategy that has

great potential as a drug target in the treatment of various

inflammatory diseases and cancer. Use of celastrol as a single agent

or in combination with existing therapies for inhibition of NF-kB,

may be an effective strategy. The multifaceted effects of celastrol

on the hematopoietic system suggest that there may be several

molecular targets, and this will need to be resolved for a more

complete understanding of both the desired, and the adverse,

effects of celastrol as a potential therapeutic agent. It is now

apparent that the adverse effects of celastrol on the hematopoietic

system need to be thoroughly evaluated prior to the initiation of

further clinical studies.
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