B Cell Lineages and Immunologic Memory

L.A. Herzenberg and A. Stall

Immunologic memory was originally defined in terms of the *in situ* anamnestic response that occurs when an individual re-encounters an antigenic stimulus. As the development of *in vitro* and adoptive transfer methods enabled identification of the cells participating in memory responses, however, a subtle redefinition occurred and immunologic memory came largely to mean the presence of such "memory" cells in a stimulated animal, regardless of whether they were detected *in situ* (by production of an anamnestic response), in vitro, or in a secondary host.

The importance of the ambiguity introduced by this redefinition became clear in later studies which showed that the presence of memory B cells and T cells is necessary but not sufficient for an anamnestic response. These findings, reviewed comprehensively in the first volume of Annual Reviews of Immunology (1), demonstrate the existence of an "epitope-specific" regulatory system that often blocks the *in situ* expression of memory cells whose activity is readily demonstrated in adoptive and in vitro assays. The cellular basis for this epitope-specific regulation has yet to be defined; however, the cells involved clearly "remember" previous antigenic stimulation. Thus, the immune system must contain at least one more functional memory cell than is currently recognized.

The recognition of a second B cell lineage introduces another level of complexity to the definition of immunologic memory, particularly with respect to memory B cells. Until the recent discovery of the Ly-1 B cell lineage, all antibody responses were thought to derive from (what we now call) conventional B cells, which rearrange and differentiate continually from Ig negative progenitors in the bone marrow and are relatively short-lived unless they encounter antigen and are triggered to differentiate further to long-lived memory B cells. By and large, these are the self-replenishing, easily transferred memory cells that produce the high affinity IgG1 and IgG2a anti-hapten responses (e.g., anti DNP, anti NP) from which so much of our information about B cell memory development and expression is derived.

Ly-1 B lineage cells have certain properties in common with these memory cells in that they are also long-lived and self replenishing; however, as the evidence summarized below demonstrates, the Ly-1 B cells are phenotypically and functionally distinct from conventional B cells (2-5). Furtherrmore, they have a unique developmental pathway that results in their repertoire being defined early in life and maintained thereafter without the influx of newly rearranged Ig genes (5-7).

B Cell Lineage Characteristics

	Ly-1 B	Conventional B
Ontogeny	Arise first	Arise later
Main location	Serosal Cavities (peritoneal, pleural)	Lymphoid Organs
Adult population	Self-replenishing (no new entrants)	Constantly being renewed
Adult source for adoptive transfer	Mature Ly-1 B (PerC)	lg- progenitors (BM, spleen)
Developmental regulation	Feedback inhibition by mature Ly-1 B	unknown
Development impaired	Xid (CBA/N)	me ^v (motheaten) μ transgenic
Phenotype:		
IgM	high	low
IgD	low	high
B220/6B2	low	high
CD5 (Ly-1)	low	negative
CD11a (MAC-1)	positive (only in PerC)	negative
CD23 (Fce R)	negative	positive
Size	large	small
Density	low	high
Function:		
Serum IgM, IgG3	+++	+
IgG1	+	+++
lgG2a, lgG2b +-++		++-+++
IgM autoantibody +++		+(?)
IgM anti bacterial ab +++		+-+++
Anti hapten, anti protein +(?) +++		